
2019

A C C E L E R A T E

State of DevOps

Sponsored by

ContentS
E XeCU T IVE SUMMARY 3

 KE Y F IND INGS 5

WHO TOOK T HE SURVE Y? 7

 DEMOGR APHICS & F IRMoGR APHICS 8

HOW DO WE COMPARE? 14

 HOW To USE T HE RESE ARCH MODELS 26

HOW DO WE IMPROVe? 29

 SDO & Organizat ional performance 30

 Product iv i t y 55

HOw DO WE T R ANSFORM: What re ally works? 69

F INAL T HOUGH TS 76

ME T HODOLOGY 77

ACKNOWLEDGEMEN TS 79

AU T HORS 80

APPENDIX A:
Visual presentation of
The Four Key Metrics 81

APPENDIX B:
Strategies for Scaling DevOps 82

T A B L E O F C O N T E N T S

3 Accelerate: State of DevOps 2019 | Executive Summary

E X E C U T I V E S U M M A R Y
The Accelerate State of DevOps Report
represents six years of research and
data from over 31,000 professionals
worldwide. It is the largest and longest-
running research of its kind, providing
an independent view into the practices
and capabilities that drive high
performance. The results let us understand
the practices that lead to excellence
in technology delivery and powerful
business outcomes.

Our research employs rigorous
statistical methods to present
data-driven insights about the most
effective and efficient ways to develop

and deliver technology. Cluster analysis
allows teams to benchmark against the
industry, identifying themselves as
low, medium, high, or elite performers
at a glance.

Teams can then leverage the findings
of our predictive analysis to identify
the specific capabilities they can use
to improve their software delivery
performance and ultimately become
an elite performer.

This year, we also investigate the ways
in which organizations can support
engineering productivity through

https://cloud.google.com/devops

4 Accelerate: State of DevOps 2019 | Executive Summary

initiatives such as supporting
information search, more usable
deployment toolchains, and reducing
technical debt through flexible
architecture, code maintainability,
and viewable systems.

Our research continues to show that
the industry-standard Four Key Metrics1
of software development and delivery
drive organizational performance in
technology transformations. This year’s
report revalidates previous findings
that it is possible to optimize for
stability without sacrificing speed.

We also the identify the capabilities
that drive improvement in the Four Key
Metrics, including technical practices,
cloud adoption, organizational practices
(including change approval processes),
and culture.

For organizations seeking guidance on
how to improve, we point to the only real path
forward: Start with foundations, and then
adopt a continuous improvement mindset
by identifying your unique constraint (or set
of constraints). Once those constraints no
longer hold you back, repeat the process.
We also provide guidance on the most
effective strategies for enacting these changes.

1 https://www.thoughtworks.com/radar/techniques/four-key-metrics

https://cloud.google.com/devops
https://www.thoughtworks.com/radar/techniques/four-key-metrics

Accelerate: State of DevOps 2019 | Executive Summary 5

KEY
FINDINGS

The industry continues to improve,
particularly among the elite performers.
The proportion of our highest performers
has almost tripled, now comprising 20% of all
teams. This shows that excellence is possible—
those that execute on key capabilities see
the benefits.

Delivering software quickly,
reliably, and safely is at the heart
of technology transformation and
organizational performance.
We see continued evidence that software
speed, stability, and availability contribute
to organizational performance (including
profitability, productivity, and customer
satisfaction). Our highest performers are
twice as likely to meet or exceed their
organizational performance goals.

1

2

https://cloud.google.com/devops

Accelerate: State of DevOps 2019 | Executive Summary 6

The best strategies for scaling
DevOps in organizations focus
on structural solutions that
build community.
High performers favor strategies that
create community structures at both
low and high levels in the organization,
including Communities of Practice and
supported Proofs of Concept, likely
making them more sustainable and
resilient to reorgs and product changes.

Cloud continues to be a differentiator
for elite performers and drives high
performance.
The use of cloud—as defined by
NIST Special Publication 800-145—
is predictive of software delivery
performance and availability. The
highest performing teams were 24
times more likely than low performers
to execute on all five capabilities of
cloud computing.

Productivity can drive
improvements in work/life balance
and reductions in burnout, and
organizations can make smart
investments to support it.

To support productivity, organizations
can foster a culture of psychological
safety and make smart investments
in tooling, information search,
and reducing technical debt
through flexible, extensible, and
viewable systems.

There’s a right way to handle the
change approval process, and it
leads to improvements in speed and
stability and reductions in burnout.

Heavyweight change approval
processes, such as change approval
boards, negatively impact speed and
stability. In contrast, having a clearly
understood process for changes
drives speed and stability, as well
as reductions in burnout.

3

4

5

6

https://cloud.google.com/devops

W H O
T O O K
T H E S U R V E Y ?

DORA’s research provides insight into
software development and DevOps
practices applied in industry, backed
by scientific studies spanning six years
with over 31,000 survey responses
from working professionals. This year,
almost 1,000² individuals from a range
of industries around the world added
their voices to the 2019 Report. Overall,
we see similar representation across
key demographic and firmographic
measures when compared to last year,
other than a noticeable drop in the
reported percentage of women on teams.

2 With almost 1,000 respondents, our analyses have a 3% margin of error assuming 23 million
software professionals worldwide and a 95% confidence interval.

8 Accelerate: State of DevOps 2019 | Who Took the Survey? 8

Compared to last year, we see consistent

representation of respondents across key

demographic categories that include gender,

disability, and underrepresented groups. While

we see similar gender makeup among our survey

respondents overall, the reported percentage of

women on teams fell compared to last year.

We also saw consistent representation across key

firmographic categories including company size,

industry, and region. The majority of respondents

work as engineers or managers within the technology

industry. We continue to have diverse representation

across departments from consultants, coaches, and

sales/marketing roles. Additionally, we continue to

see industry representation from highly regulated

organizations in financial services, government,

healthcare, and retail companies.

DEMOGRAPHICS
& FIRMOGRAPHICS

https://cloud.google.com/devops

9 Accelerate: State of DevOps 2019 | Who Took the Survey?

3 This is similar to proportions reported by the Stack Overflow Developer Survey 2019, which includes 90% men and 10% women.
They do not include non-binary and “did not specify.” https://insights.stackoverflow.com/survey/2019

4 This is consistent with proportions seen elsewhere in industry; e.g., the Stack Overflow Developer Survey 2019,
which reports 6% of total respondents identify as having a disability. https://insights.stackoverflow.com/survey/2019

D
EM

O
G

R
AP

H
IC

S
GENDER

DISABILITY

Male Non-BinaryFemale Did not specify

YesNo Did not specify

10
+82+1+7+L

83%
10%

7%

1%

6
+85+9+L

85%
6%

9%

Gender breakouts from this year’s survey responses remain

consistent with 83% male in 2019 (vs. 83% last year), 10% female

(vs 12% last year), and <1% non-binary (vs <1% last year).3

Disability is identified along six dimensions that follow

guidance from the Washington Group Short Set.

This is the second year we have asked about disability

and it has stayed consistent at 6% in 2018 and 2019.4

Respondents this year stated that only 16% of teams
include women (median), representing a dip from
25% reported last year.

https://cloud.google.com/devops
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019

D
EM

O
G

R
AP

H
IC

S

10 Accelerate: State of DevOps 2019 | Who Took the Survey?

* > 100% due to rounding

48%

3% 9%
16% 20%

4%
More

than 16
0-2 3-5 6-10 11-15 Prefer not

to respond

UNDERREPRESENTED GROUPS
Identifying as a member of an underrepresented group

can refer to race, gender, or another characteristic. This is

the third year we have captured this data and it has stayed

relatively consistent from 13% in 2018 to 14% in 2019.* 14
+75+11+L

76%

14%

11%

YesNo Did not specify

YEARS OF EXPERIENCE
Similar to last year, a large portion of respondents have

more than 16 years of experience (50% last year), followed

by 11-15 years of experience (also 20% last year).

Overall demographic breakouts in 2019 remain consistent with
2018, with slight percentage variances year to year that fall
within the margin of error.

https://cloud.google.com/devops

11 Accelerate: State of DevOps 2019 | Who Took the Survey?

 30%
 26%
 16%
 5%

 4%
 4%
 3%
 2%
 2%
 2%
 1%
 1%
 1%
 1%

Development or Engineering
DevOps or SRE

Manager
IT Operations or Infrastructure

Consultant, Coach, or Trainer
C-level Executive

Product Management
Prefer Not to Answer

NA
Other

Professional Services
Quality Engineering or Assurance

Information Security
Release Engineering

 38%
 12%
 9%
 9%
 5%
 5%
 4%
 4%

 4%
 3%
 3%
 3%
 1%

Technology
Financial Services

Retail/Consumer/e-Commerce
Other

Healthcare & Pharmaceuticals
Government

Media/Entertainment
Insurance
Education

Industrials & Manufacturing
Telecommunications

Energy
Non-profit

FI
R

M
O

G
R

AP
H

IC
S

DEPARTMENTS
Participants who work in DevOps teams have increased

since we began our study, reporting 16% in 2014, 19%

in 2015, 22% in 2016, and holding steady around 27%

for the past three years. (Note this is within the margin of error.)

INDUSTRY
Similar to last year, most respondents work within the

technology industry, followed by financial services, retail,

and other.

https://cloud.google.com/devops

12 Accelerate: State of DevOps 2019 | Who Took the Survey?

50%
2% 4%

1%

1%29%
9%

1%
1%

FI
R

M
O

G
R

AP
H

IC
S

REGION
Consistent with last year, North America accounts for

roughly half of all respondents , followed by EU/ UK

at 29%. We see a drop in responses from Asia, falling

from 18% last year to 9% this year.

https://cloud.google.com/devops

13 Accelerate: State of DevOps 2019 | Who Took the Survey?

EMPLOYEES
One out of four respondents work at very large companies

(10,000+) employees, accounting for 26% of all responses, and

another two out of four respondents work at companies ranging

between 20-1,999 employees. These distributions are similar

to the 2018 Report, though there was a drop in responses from

employees working in companies with 500-1,999 employees

(down 12% vs 2018) and more responses from people working

in company sizes of 100-499 employees (up 7% vs 2018).

OPERATING SYSTEMS
The distribution of operating systems

was fairly consistent compared to

last year as well.

 3%
 1%
 3%
 13%

 21%
 15%
 8%

 7%
 26%
 2%

1-4
5-9

10-19
20-99

100-499
500-1,999

2,000-4,999
5,000-9,999

10,000+
I don’t know/NA

FI
R

M
O

G
R

AP
H

IC
S

 12%
 6%

 33%
 26%

 56%
 52%

 22%
 25%
 36%
 43%

 48%
 49%

 5%
 4%

 8%
 5%
 4%
 4%

2%
2%

3%
3%

 13%
 11%

 10%
7%

 12%
 5%

 12%
 8%

 8%
4%

Windows 2003/2003R2

Windows 2008/2008R2

Windows 2012/2012R2

Other Windows

Linux Debian/Ubuntu variants

Linux Enterprise variants (RHEL, Oracle, CentOS)

Linux Fedora

SUSE Linux Enterprise Server

Linux OpenSUSE

Linux Arch

Other Linux

Other UNIX

FreeBSD/NetBSD/OpenBSD

AIX

Solaris

OS Other

2018

2019

https://cloud.google.com/devops

H O W D O W E
C O M P A R E ?

This section functions as your DevOps
benchmark assessment. We use rigorous
statistical methods to examine how teams
are developing, delivering, and operating
software systems. Benchmarks for elite,
high, medium, and low performers show
where you are in the context of multiple
important analyses throughout the report.
We also identify trends year over year.

15 Accelerate: State of DevOps 2019 | How Do We Compare?15

Organizations increasingly rely on their ability to deliver

and operate software systems to achieve their goals.

To compare performance on this key outcome metric,

the industry needs a way to measure the effectiveness

of their development and delivery practices. Over the

last six years we have developed and validated four

metrics that provide a high-level systems view of

software delivery and performance and predict an

organization’s ability to achieve its goals. Last year,

we added an additional metric focused on operational

capabilities, and found that this measure helps

organizations deliver superior outcomes. We call

these five measures software delivery and
operational (SDO) performance, which focus

on system-level outcomes. This helps avoid the

common pitfalls of software metrics, which often pit

different functions against each other and result in

local optimizations at the cost of overall outcomes.

SOFTWARE
DELIVERY AND
OPERATIONAL
PERFORMANCE

https://cloud.google.com/devops

16 Accelerate: State of DevOps 2019 | How Do We Compare?

SOFTWARE DEVELOPMENT SOFTWARE DEPLOYMENT SERVICE OPERATION

Lead Time Change Fail Availability

Deployment Frequency Time to Restore

FOUR KEY METRICS

The first four metrics that capture the

effectiveness of the development and

delivery process can be summarized in terms

of throughput and stability. We measure the

throughput of the software delivery process

using lead time of code changes from check-in

to release along with deployment frequency.

Stability is measured using time to restore—

the time it takes from detecting a user-

impacting incident to having it remediated—

and change fail rate, a measure of the quality

of the release process.

P E R F O R M A N C E M E T R I C S

https://cloud.google.com/devops

17 Accelerate: State of DevOps 2019 | How Do We Compare?

5 Availability is not included in our cluster analysis because availability measures do not apply the same way for software solutions that are not provided
in the form of services, such as packaged software or firmware.

6 Teams can define their availability goals using Service Level Agreements (SLAs) and Service Level Objectives (SLOs) and measure their performance using
Service Level Indicators (SLIs). For more information on developing SLAs, SLOs, and SLIs, you can check out Site Reliability Engineering: How Google
Runs Production Systems (2016) by Beyer et al.

Many professionals approach these metrics as

representing a set of trade-offs, believing that

increasing throughput will negatively impact

the reliability of the software delivery process

and the availability of services. For six years in

a row, however, our research has consistently

shown that speed and stability are outcomes

that enable each other. Cluster analysis of the

four software delivery measures in the 2019

data reveals four distinct performance profiles,

with statistically significant differences in

throughput and stability measures among

them.5 As in previous years, our highest

performers do significantly better on all four

measures, and low performers do significantly

worse in all areas.

In addition to speed and stability, availability

is important for operational performance.

At a high level, availability represents an

ability for technology teams and organizations

to keep promises and assertions about

the software they are operating. Notably,

availability is about ensuring a product or

service is available to and can be accessed

by your end users.6

Availability reflects how well teams define

their availability targets, track their current

availability, and learn from any outages,

making sure their feedback loops are

complete. The items used to measure

availability form a valid and reliable

measurement construct.

https://cloud.google.com/devops
https://landing.google.com/sre/books/
https://landing.google.com/sre/books/

18 Accelerate: State of DevOps 2019 | How Do We Compare?

Aspect of Software Delivery Performance* Elite High Medium Low

Deployment frequency
For the primary application or service you work on, how
often does your organization deploy code to production
or release it to end users?

On-demand
(multiple
deploys per day)

Between once
per day and
once per week

Between once
per week and
once per month

Between once
per month and
once every six
months

Lead time for changes
For the primary application or service you work on, what is your
lead time for changes (i.e., how long does it take to go from code
committed to code successfully running in production)?

Less than
one day

Between one
day and
one week

Between one
week and
one month

Between one
month and
six months

Time to restore service
For the primary application or service you work on, how long
does it generally take to restore service when a service incident
or a defect that impacts users occurs (e.g., unplanned outage or
service impairment)?

Less than
one hour

Less than
one daya

Less than
one daya

Between one
week and
one month

Change failure rate
For the primary application or service you work on, what percentage
of changes to production or released to users result in degraded
service (e.g., lead to service impairment or service outage) and
subsequently require remediation (e.g., require a hotfix, rollback,
fix forward, patch)?

0-15%b,c

0-15%b,d

0-15%c,d

46-60%

Medians reported because distributions are not normal.
All differences are significantly different based on Tukey’s post hoc analysis except where otherwise noted.
a,b,c Means are significantly different based on Tukey’s post hoc analysis; medians do not exhibit differences because of underlying distributions.
d Means are not significantly different based on Tukey’s post hoc analysis.
*For a visual presentation of the Four Metrics, please see Appendix A.

https://cloud.google.com/devops

19 Accelerate: State of DevOps 2019 | How Do We Compare?

7 It should also be noted that none of these practices apply solely to the cloud.

We also confirmed last year’s finding that better

software delivery goes hand-in-hand with higher

availability. Analysis shows that availability

measures are significantly correlated with software

delivery performance profiles, and elite and high

performers consistently reported superior

availability, with elite performers being 1.7 times

more likely to have strong availability practices.7

Industry velocity is increasing
Many analysts are reporting the industry has

“crossed the chasm” with regards to DevOps and

technology transformation, and our analysis this

year confirms these observations. Industry velocity

is increasing and speed and stability are both

possible, with shifts to cloud technologies fueling

this acceleration. This reaffirms the importance

of technology that enables organization to deliver

value to their stakeholders.

We ran additional analyses (e.g., using control variables)
to see if industry and organization size had a significant
effect on SDO performance. We found no evidence that
industry has an impact with the exception of retail,
suggesting that organizations of all types and sizes,
including highly regulated industries such as financial
services and government, can achieve high levels of
performance. Our results for the retail industry suggest
that those in retail see some benefits in speed and stability.

We found evidence that enterprise organizations
(those with more than 5,000 employees) are lower
performers when compared to those with fewer than
5,000 employees. This is likely due to several factors
seen in large organizations, most notably heavyweight
process and controls as well as tightly coupled
architectures that introduce delay and associated
instability. We urge enterprises not to take these
findings as an excuse to suffer poor performance,
but recognize that excellence is possible, embark on a
program of continuous improvement, and look to other
enterprise organizations that have achieved elite
performance for inspiration and guidance.

INDUSTRY AND
ORGANIZATION IMPACTS
ON SDO PERFORMANCE

https://cloud.google.com/devops

20 Accelerate: State of DevOps 2019 | How Do We Compare?

We compared the proportions of each

performance cluster in 2018 and 2019:

2 0 1 8 2 0 1 9 *

ELITE
7%

48%

23%

37%

44%
15%

12%

HIGH PERFORMERS

HIGH PERFORMERS

MEDIUM PERFORMERS

MEDIUM PERFORMERS

LOW PERFORMERS

LOW
PERFORMERS

PERFORMANCE CLUSTERS
We identified elite performers in last year’s report

for the first time, but this group was a subset of

our high performers. This year, we see four distinct

groups in our analysis. We use the same name

because the elite performers exhibit the same

speed and stability characteristics this year as last

year, showing that these two groups are similar.

20%
ELITE
PERFORMERS

* < 100% due to rounding

This comparison shows us that:

• The proportion of our elite performers has almost tripled,
showing that excellence is possible—it just requires execution.

• The proportion of low performers is down. This reflects
a continued shift in the industry, as organizations continue
to transform their technology.

• The proportion of medium performers is up. Some are likely
improved low performers, while others may be high performers
who dropped as they struggled with increased complexity.

https://cloud.google.com/devops

21 Accelerate: State of DevOps 2019 | How Do We Compare?

ELITE PERFORMERS
Comparing the elite group against the low

performers, we find that elite performers have…

frequent code deployments

208
TIMES MORE

 time to recover from incidents

2,604
TIMES FASTER

lead time from
commit to deploy

106
TIMES FASTER

change failure rate
(changes are 1/7 as likely to fail)

7
TIMES LOWER

Throughput Stability

https://cloud.google.com/devops

22 Accelerate: State of DevOps 2019 | How Do We Compare?

8 In 2017: https://www.informationweek.com/devops/capital-one-devops-at-its-core/d/d-id/1330515

THROUGHPUT
Deployment frequency
The elite group reported that it routinely deploys on-demand and

performs multiple deployments per day, consistent with the last

several years. By comparison, low performers reported deploying

between once per month (12 per year) and once per six months

(two per year), which is a decrease in performance from last year.

The normalized annual deployment numbers range from 1,460

deploys per year (calculated as four deploys per day x 365 days) for

the highest performers to seven deploys per year for low performers

(average of 12 deploys and two deploys). Extending this analysis

shows that elite performers deploy code 208 times more frequently

than low performers. It's worth noting that four deploys per day

is a conservative estimate when comparing against companies

such as CapitalOne that report deploying up to 50 times per day

for a product,8 or companies such as Amazon, Google, and Netflix

that deploy thousands of times per day (aggregated over the

hundreds of services that comprise their production environments).

https://cloud.google.com/devops
https://www.informationweek.com/devops/capital-one-devops-at-its-core/d/d-id/1330515

23 Accelerate: State of DevOps 2019 | How Do We Compare?

Change lead time
Similarly, elite performers report change

lead times of less than one day, with change

lead time measured as the time from code

committed to having that code successfully

deployed in production. This is a small

decrease in performance from last year, when

our highest performers reported change lead

times of less than one hour. In contrast to our

elite performers, low performers required lead

times between one month and six months.

With lead times of 24 hours for elite performers

(a conservative estimate at the high end of

“less than one day”) and 2,555 hours for low

performers (the mean of 730 hours per month

and 4,380 hours over six months), the elite

group has 106 times faster change lead times

than low performers.

https://cloud.google.com/devops

24 Accelerate: State of DevOps 2019 | How Do We Compare?

STABILITY
Time to restore service
The elite group reported time to restore service of less than one hour,

while low performers reported between one week and one month.

For this calculation, we chose conservative time ranges: one hour for high

performers and the mean of one week (168 hours) and one month (5,040

hours) for low performers. Based on these numbers, elites have 2,604 times

faster time to restore service than low performers. As previously noted,

time to restore service performance stayed the same for both elite and

low performers when compared to the previous year.

Change failure rate
Elite performers reported a change failure rate between zero and 15%,

while low performers reported change failure rates of 46% to 60%.

The mean between these two ranges shows a 7.5% change failure rate

for elite performers and 53% for low performers. This represents change

failure rates for elite performers that are seven times better than low

performers. As noted earlier, change failure rates stayed the same

for both elite and low performers when compared to the previous year.

https://cloud.google.com/devops

25 Accelerate: State of DevOps 2019 | How Do We Compare?

SOFTWARE DELIVERY
PERFORMANCE

All of the measures shown are relative; that

is, they compare the highest and the lowest

performers each year. From 2018 to 2019, the

gap for all performance metrics between

the lowest and highest performers increased

or stayed the same, with the exception of lead

time for changes. The increased gap in deploy

frequency indicates a decrease in performance

among low performers, which may be due

to growing complexity in environments and

therefore difficulty in delivering software.

The reduced ratio of the lowest to the highest

performers in lead time represents a reduction

in the performance of the highest performing

group, which is seeing lead times increase

from less than an hour to between an hour

and a day. This may reflect the trend in more

heavyweight code review and approval

processes that have become popular

in recent years.

2 0 1 9

208x
More Frequent

Deploy Frequency

2604x
Faster Time to

Restore Service

106x
Faster

Lead TIme

7x
Lower Change

Fail Rate

2 0 1 8

46x
More Frequent

Deploy Frequency

2604x
Faster Time to

Restore Service

2555x
Faster

Lead TIme

7x
Lower Change

Fail Rate

Comparing highest to lowest performers.

https://cloud.google.com/devops

26 Accelerate: State of DevOps 2019 | How to Use the Research Models

HOW TO
USE THE
RESEARCH MODELS

This year’s Report is designed to help drive

improvement in both performance and

productivity using two research models. You

may wonder, why are there two research models?

How are they different? How are they similar?

And most importantly, how can I use them to

help me make decisions and guide my own work?

Start by identifying your goal...

PRODUCTIVITYSDO & ORGANIZATIONAL
PERFORMANCE

CULTURE OF PSYCHOLOGICAL SAFETY

CLOUD INTERNAL SEARCH

EXTERNAL SEARCH

DISASTER RECOVERY TESTING TECHNICAL DEBT

CHANGE MANAGEMENT USEFUL, EASY-TO-USE TOOLS

TECHNICAL PRACTICES

START

https://cloud.google.com/devops

27 Accelerate: State of DevOps 2019 | How to Use the Research Models

If you want to improve SDO performance or organizational
performance, look at the model with those constructs,

and head to that section of the report for guidance on which

capabilities you should focus on.

If you want to improve productivity, look at the model with

productivity as a construct, and head to that section of the

report for guidance on which capabilities you should focus on.

How to use the models
to guide your transformation

• Identify the capabilities that will improve your goal (that

is, those with arrows that point to the construct you want

to improve). As we’ve identified in this report, these are

your candidate capabilities for improvement. (For SDO

and organizational performance, we have also identified

additional capabilities in our previous five years of research.)9

• Remember to accelerate your transformation by starting

with a solid foundation and then focusing on the

capabilities that are constraints: What capabilities cause

the biggest delays? What are the biggest headaches?

Where are the biggest problems? Pick three to five and

dedicate resources to solving these first. Don’t worry

if you still have problems; by focusing on the biggest

problems now, you remove bottlenecks, discover

synergies, and avoid unnecessary work.

• There are other important outcomes from this work.

Benefits from pursuing improvements in SDO and

organizational performance include reducing burnout

and deployment pain (which we researched in

2016 and 2017), and improving security outcomes

(which we researched in 2017 and 2018), and culture

(researched in years 2014 through 2019). Additional

benefits from improving productivity include improving

work/life balance and reducing burnout.

How to read the research models

We use a structural equation model (SEM), which is a predictive

model used to test relationships. Each box represents

a construct we measured in our research, and each arrow

represents relationships between the constructs. A larger

box that contains boxes (constructs) is a second-order

construct. A light blue box with a dotted line to another construct

indicates a control variable. (See pages 31 and 57 for full models.)

Constructs in bold represent those that we investigate for the

first time this year. Constructs with a dark bold outline are

common team and organizational goals: SDO performance

and organizational performance or productivity. Keep these

in mind as you identify your goals and read the models.

9 You can find all of our State of DevOps Reports at cloud.google.com/devops

https://cloud.google.com/devops
https://cloud.google.com/devops

28 Accelerate: State of DevOps 2019 | How to Use the Research Models

To interpret the models, all lines with arrows can be read

using the words “predicts,” “affects,” “drives,” or “impacts.”

For example, the second-order construct SDO performance is

comprised of the constructs software delivery performance

and availability, and these together drive organizational

performance. The construct disaster recovery testing drives

availability. We indicate that disaster recovery testing is a

newly investigated construct this year by marking it in bold.

An arrowed line with a (-) next to it indicates a negative impact

between two constructs; for example, technical debt negatively

impacts (or reduces) productivity.

You may notice there’s some overlap
in the two research models.

This is because the goals—SDO performance and productivity—

are related in many ways. The outcomes are about making

and delivering technology in superior ways, and in ways

that deliver value to organizations and to individuals.

It makes sense that some of the things we do to support

the work of software delivery will also benefit the productivity

of those who develop and deliver software. Yet while they

are similar, they still measure different outcomes and so we

conduct our analysis separately. Thus, they are in two different

research models.

What the overlap in the two research
models tells us

• Making smart investments in the pursuit of SDO

performance can reduce burnout, and better productivity

can lead to reductions in burnout as well. This should

be encouraging to organizations and technologists

alike, as the demands of work continue to grow.

We note that having a good work/life balance is

key to reducing burnout.

• A culture of psychological safety contributes to

SDO performance, organizational performance,

and productivity, showing that growing and fostering

a healthy culture reaps benefits for organizations

and individuals.

• Investments in code maintainability, loosely coupled

architecture, and monitoring help support SDO

performance (via continuous delivery) and productivity

(via reductions in technical debt), highlighting the

importance of good tooling and systems.

https://cloud.google.com/devops

H O W D O W E
I M P R O V E S D O &
O R G A N I Z AT I O N A L
P E R F O R M A N C E ?

A key goal in digital transformation is
optimizing software delivery performance:
leveraging technology to deliver value
to customers and stakeholders. Our
research provides evidence-based
guidance so you can focus on the
capabilities and practices that matter
to accelerate your transformation. This
year, we also outline implementation
strategies so you can set your path
forward for maximum impact.

30 Accelerate: State of DevOps 2019 | How Do We Improve SDO & Organizational Performance?30

Begin by focusing on the capabilities outlined in our

research; they provide predictive guidelines to improve

your technology delivery and deliver value. Start with

foundations: Basic automation (such as version control

and automated testing), monitoring, clear change

approval processes, and a healthy culture. Then

identify your constraints to plan your path forward.

This strategy works for those just beginning

transformations as well as those who have been

optimizing for years. Focus resources on what is

currently holding you back, then iterate: Identify

constraints and choose the next target.

Use the model on page 31 to locate the goal you

want to improve and identify the capabilities that

impact it. For example, if your goal is to improve

software delivery performance, these capabilities

are culture, clear change process, continuous

delivery, and cloud. Then focus on those that

are your biggest constraints.

IMPROVING
SDO AND
ORGANIZATIONAL
PERFORMANCE

https://cloud.google.com/devops

31 Accelerate: State of DevOps 2019 | How Do We Improve SDO & Organizational Performance?

SOFTWARE DELIVERY & OPERATIONAL PERFORMANCE

SDO Performance

Organizational
performance

Industry (control)
Enterprise (control)

CULTURE OF PSYCHOLOGICAL SAFETY

Burnout

Construct

Control variable

Second-order construct

 Common goal
for team or organization

Predictive relationship

Mixed results

Negative predictive relationship

Continuous
delivery

Loosely coupled architecture

Monitoring

Deployment automation

HEAVYWEIGHT CHANGE PROCESS

CODE MAINTAINABILITY

Trunk-based development

CLEAR CHANGE PROCESS

Continuous
integration

Automated
testing

Cloud

-

DISASTER RECOVERY TESTING

--

-

Availability

Software
delivery
performance

BOLD Newly investigated this year

https://cloud.google.com/devops

EXCEL OR DIE
• Retailers often have some of the slimmest

margins, requiring efficiency and automation
to scale and respond to changes quickly.

• Retailers must be able to cope with huge swings
in demand or risk going out of business—Black
Friday can make or break a retailer’s entire year.
By leveraging the cloud, retailers can burst
capacity easily and they aren’t stuck having
discussions about “if” or “when” they should use
the cloud. They’re already there.

• Retailers have figured out how to be nimble in
highly regulated environments because they
have to. While other industries had the luxury
of blaming regulation for delayed adoption, the
competitive environment forced retailers to figure
out how to operate in regulated environments
quickly and securely. And they’re doing it. After
all, you can’t sell goods without processing the
occasional credit card transaction.

Our analysis found no evidence that industry made an
impact in the speed and stability of software delivery, except
for retail, which saw significantly better SDO performance.
When we consider the crushing competitive environment of
the retail industry—termed the retail apocalypse following a
decade of steady closures—this should come as no surprise.
Those who excel at delivering profitability, productivity, and
customer satisfaction survive. Anything less than excellence
leads to failure. While retailers may be at the forefront of
this highly competitive shift, we see other industries such as
financial services following quickly behind.

Keeping up with the rate of technological change is essential
for organizations in these competitive environments who
must keep demanding customers happy and satisfied while
delivering consistent revenues to keep stakeholders satisfied.
Retail may be the perfect example of technology delivering
value, and those in other industries should learn from their
experience:

• Retailers were among the first to embrace A/B testing to
understand customers’ buying habits, preferences, and
interactions in websites and apps so they could optimize
purchases. This technical ability requires more robust
technical solutions and provides a powerful feedback
loop to product development and marketing.

33 Accelerate: State of DevOps 2019 | How Do We Improve SDO & Organizational Performance?

CLOUD
With the evolving nature of business, more and

more organizations are choosing multi-cloud

and hybrid cloud solutions. This is because these

solutions offer flexibility, control, and availability

in addition to performance gains.10 In our survey,

respondents indicated increased use of multi-

cloud and hybrid cloud compared to last year.

We also asked respondents to indicate where

their primary application work was hosted,

and again saw responses that indicate there is

no clear consensus on what it means to work

in a hybrid or multi-cloud environment. As we

stated in last year’s report, hybrid is often self-

defined. If respondents say they are working in

a hybrid environment, then they are. This often

creates frustration (and widely varying reports

10 Transform Your Business with a Hybrid and Multicloud Strategy, Tilak, March 2019.

HOSTING FOR PRIMARY SERVICE
OR APPLICATION

among industry analysts) when experts try to

discuss terms and the state of the industry:

We can’t compare things that we can’t define

and measure.

44%
27%

23%
5%

50%

3%
Private OtherPublic No Cloud Hybrid Personal

Server

https://cloud.google.com/devops
https://blog.equinix.com/blog/2019/03/19/transform-your-business-with-a-hybrid-and-multicloud-strategy/

34 Accelerate: State of DevOps 2019 | How Do We Improve SDO & Organizational Performance?

HOW YOU IMPLEMENT
CLOUD INFRASTRUCTURE MATTERS
If everyone has a different understanding of what it means to be

“in the cloud,” how can we actually measure its benefits? We address

this limitation by focusing on the essential characteristics of cloud
computing*—as defined by the National Institute of Standards and

Technology (NIST)—and use that as our guide.

In our survey, 80% of respondents11 said the primary application or

service they supported was hosted on some kind of cloud platform.

Using the NIST framework, we investigated the impact of essential

practices on SDO performance and, for the second year in a row,

found that what really matters is how teams implement their cloud

services, not just that they are using a cloud technology.

* Terms in bold throughout this report match constructs that can be found in the research models on page 31 and 57.
11 Refer to the previous chart that shows where respondents’ primary service or application is hosted.

Note that more than one option could be selected, so 80% of respondents selected an option that included the cloud.

https://cloud.google.com/devops

35

 AGREED OR STRONGLY AGREED%

Elite performers were 24 times more likely to

have met all essential cloud characteristics

than low performers.12 This may explain why

teams and executives who claim to have

adopted cloud computing technologies also

feel frustration at not reaping the promised

benefits of speed and stability: Many of our

survey respondents who claim to be using

cloud computing haven’t actually adopted

the essential patterns that matter. Only 29%

of respondents who said they were using cloud

infrastructure agreed or strongly agreed that

they met all five of the characteristics of

essential cloud computing defined by NIST.

On-demand self-service
+11% from 2018

Consumers can automatically provision computing resources
as needed, without human interaction from the provider.

Broad network access
+14% from 2018

Capabilities can be accessed through heterogeneous platforms
such as mobile phones, tablets, laptops, and workstations.

Resource pooling
+15% from 2018

Provider resources are pooled in a multi-tenant model, with physical
and virtual resources dynamically assigned on-demand. The customer
may specify location at a higher level of abstraction such as country,
state, or datacenter.

Rapid elasticity
+13% from 2018

Capabilities can be elastically provisioned and released to rapidly scale
outward or inward on demand, appearing to be unlimited and able to
be appropriated in any quantity at any time.

Measured service
+14% from 2018

Cloud systems automatically control, optimize, and report resource use
based on the type of service such as storage, processing, bandwidth,
and active user accounts.

FIVE ESSENTIAL
CHARACTERISTICS
OF CLOUD COMPUTING

12 This is consistent with last year’s findings, that elite performers were 23 times more likely than low
performers to agree or strongly agree with all essential cloud characteristics.

11+46+43+L

14+46+40+L

15+43+42+L

13+45+42+L

14+48+18+L

57%

58%

58%

62%

60%

https://cloud.google.com/devops

36

SCALING
THE CLOUDLast year we found that elite performing teams

were more likely to be executing on all five

essential cloud characteristics, and those

findings were revalidated this year. These

characteristics matter when defining what it

means to adopt cloud computing because they

enable an actionable strategy for success: Our

research shows they impact SDO performance.

By focusing on execution in the cloud—whether

public, private, or hybrid—any team or

organization is capable of reaping the benefits

of speed, stability, and availability.

A clear win from using the cloud is on-demand scaling. Teams
that take advantage of dynamic scaling are able to make the
infrastructure behind their service elastically react to demand from
users. Teams can monitor their services and automatically scale
their infrastructure as needed.

The abstractions used in the cloud have changed the ways we think
about and visualize our infrastructure. For someone using a
container orchestrator such as Kubernetes or Mesos, the package
being shipped is a container image plus the config for deployment.
Typical platform-as-service (PaaS) offerings are leaning more
towards a deployment model centered around container images as
the packaging method and container runtimes for execution. We see
this in products such as Heroku, Google App Engine, Azure Container
Instances, Cloud Foundry, and Amazon’s Fargate. Serverless (also
known as function-as-a-service, or FaaS)13 has taken this one step
further, simplifying deployment and allowing consumers to only
worry about the execution of the application code itself and
abstracting scaling, capacity planning, and maintenance away
from developers and operators. Examples include AWS Lambda,
Azure Functions, GCP Cloud Functions, and Zeit.

Over time, the abstractions used in the cloud have become universal
standards for deployment across cloud and platform providers.
Network, virtual machines, identity and access management (IAM),
storage, and databases have all become the de-facto products
of every cloud service provider, in addition to machine learning,
Internet of Things (IoT), container solutions, language runtime
solutions, and security products. We continue to see the state
of products converge on the paradigms around containers,
runtime languages, and application packages.

13 The term serverless is also used to describe “rich-client” applications.
Here, we limit our description to function-as-a-service. Please see this post
by Mike Roberts for more information:
https://martinfowler.com/articles/serverless.html#WhatIsServerless

https://cloud.google.com/devops
https://martinfowler.com/articles/serverless.html#WhatIsServerless

37

CLOUD COST
The cloud is also changing how we think about

costs for our infrastructure and deployments.

No longer is the unit of measurement an entire

datacenter or even a full rack of servers.

Customers of cloud providers can focus on

paying only for what they use while having the

agility to scale when necessary.

In addition to positively impacting SDO

performance, adopting cloud best practices

improves organizations’ visibility into the cost

of running their technologies. Respondents

who meet all essential cloud characteristics are

2.6 times more likely to be able to accurately

estimate the cost to operate software. They are

also twice as likely to be able to easily identify

their most operationally expensive

applications, and 1.65 times as likely

to stay under their software operation budget.

Why can teams on the cloud better estimate and manage their costs? It
is likely because the cloud provides better visibility into infrastructure
usage and spend to developers and IT operations professionals. This
increased visibility and awareness make it possible to change the way
we architect and build our systems while also aligning incentives.
While this variability can be initially confusing and overwhelming for
those unused to this new financial model, teams can reap the benefits
of efficient design by only paying for the compute resources they use.

In contrast, the data center in traditional environments is often a
“black box,” where information about processing and cycle cost is
difficult or impossible to get. Additionally, the nature of capital
expenses means that once infrastructure is purchased, there are no
benefits for being aggressively efficient with design. In this regard, the
capital expenses are a fixed cost—predictable and understood up-front,
but rarely visible to the engineering team and impossible to avoid even
if more efficient designs are deployed.

Some in finance may say that the cloud has not led to cost savings
in the short-run, yet we know that it provides greater information
transparency. How can this be? While the cloud provides transparent
information about costs to the system owners, users do not pay for
these costs unless there is a chargeback model or similar mechanism.
This can lead to wildly variable costs that go unchecked, making cloud
costs unpredictable. In these scenarios, teams that pay for infrastructure
may prefer data centers because they are predictable, even though
their visibility disincentivizes system users to build more efficient
systems. We suggest organizations better align incentives so that
system owners have both visibility to build more efficient systems, and
the incentives to do so, by using chargeback or similar mechanisms.

While some workloads are better suited to on-prem environments (such
as those that are steady or predictable), there are other benefits to using
cloud infrastructure, such as the ability to leverage infrastructure-as-code.

BLACK BOX
VS. TRANSPARENCY

https://cloud.google.com/devops

38 Accelerate: State of DevOps 2019 | How Do We Improve SDO & Organizational Performance?

TECHNICAL PRACTICES
Executing for maximum effect
Many organizations wanting to adopt DevOps look for a set of prescriptive

steps or best practices to guide their journey. However, every organization

is different and which practices to adopt depends on the current state

of the organization—including the state of its technology, culture, and

processes—and its short- and long-term goals.

The solution is to take a holistic approach, where you first work to

understand the constraints in your current software delivery process

with an eye to your short- and long-term outcomes in measurable terms.

Then empower teams to decide how best to accomplish those outcomes—

after all, they are the experts in their work and context.14 Those who adopt

this approach see more scalable and flexible solutions, and by not having

to micromanage detailed execution plans, management can focus on

high-level outcomes, allowing their organizations to grow. By focusing on

designing and executing short-term outcomes that support the long-term

strategy, teams are able to adjust to emergent and unanticipated

14 This approach derives from the work of Mike Rother based on his study of Toyota, which is described in detail at
http://www-personal.umich.edu/~mrother/Homepage.html.

https://cloud.google.com/devops
http://www-personal.umich.edu/~mrother/Homepage.html

39 Accelerate: State of DevOps 2019 | How Do We Improve SDO & Organizational Performance?

problems, outperforming their peers whose three-

and five-year plans cannot be flexible and nimble

enough to keep up with changes in customer

demands, the technology landscape, or emergent

security threats.15

While there is no “one size fits all” approach to

improvement, we have observed some themes

in our work helping organizations adopt DevOps.

These themes are particularly relevant for companies

looking to accelerate their transformation in the

face of seemingly difficult and complex constraints.

Concurrent efforts at team
and organization levels
Some capabilities are typically developed

at the team level, while others—particularly

in large organizations or organizations with

strong hierarchical structures—often require

organization-level efforts. These two streams—

team-level and organization-level—can and

should proceed concurrently, as they often

support each other.

15 Providing teams with the capacity and resources on an ongoing basis is essential to the success of this approach.
16 For an exhaustive list of capabilities that drive improvements in SDO performance, we point the reader to Appendix A in Accelerate: The Science of Lean Software and DevOps (which summarizes the 2014 - 2017 State of DevOps

Reports), the 2018 Accelerate State of DevOps Report, and this Report.

CAPABILITIES RESEARCHED IN 201916

Organization level
• Loosely coupled architecture
• Clear change process
• Code maintainability

Team level

• Continuous integration
• Automated testing
• Deployment automation
• Monitoring
• Trunk-based development

Both team and
organizational level

• Use of cloud services
• Disaster recovery testing

For example, creating a continuous integration

platform that makes it easy for teams to get

fast feedback on their automated tests can be

a significant force-multiplier when used across

several teams in an organization.

https://cloud.google.com/devops
https://books.google.com/books/about/Accelerate.html?id=85XHAQAACAAJ
https://cloud.google.com/devops

40 Accelerate: State of DevOps 2019 | How Do We Improve SDO & Organizational Performance?

Similarly, deployment automation at the team

level will have little impact if the team’s code

can only be deployed together with that of other

teams. This points to an architectural obstacle

that must be resolved at the organizational level

(which, in turn, is likely to require work from

individual teams).

We will look at these capabilities in more detail,

investigating them through the lens of team-level

and organization-level capabilities.

Remember that our goal is improving our ability

to deliver software, which we accomplish through

technical practices in delivery and deployment

we call continuous delivery (CD). CD reduces

the risk and cost of performing releases.

Continuous delivery for the sake of continuous

delivery is not enough if you want your organization

to succeed, however. It must be done with an eye to

organizational goals such as profitability,

productivity, and customer satisfaction.

Teams can deploy on-demand to production
or to end users throughout the software
delivery lifecycle.

Fast feedback on the quality and
deployability of the system is available
to everyone on the team and acting on this
feedback is team members’ highest priority.

HOW WE MEASURED CONTINUOUS DELIVERY

https://cloud.google.com/devops

41 Accelerate: State of DevOps 2019 | How Do We Improve SDO & Organizational Performance?

Team-level technical capabilities
In previous years we found that test automation

had a significant impact on CD. This year, we

built upon prior years’ research and found that

automated testing positively impacts continuous
integration (CI). With automated testing, developers

gain confidence that a failure in a test suite denotes

an actual failure just as much as a test suite passing

successfully means it can be successfully deployed.

The ability to reproduce and fix failures, gather

feedback from tests, improve test quality and iterate

test runs quickly also ties into automated testing.

We revalidated that CI improves CD. For CI

to be impactful, each code commit should

result in a successful build of the software

and a set of test suites being run. Automated

builds and tests for a project should be run

successfully every day.

We revalidated that deployment automation,

trunk-based development17, and monitoring

impact CD. These capabilities may have

dependencies on organization-level work,

as we described for deployment automation.

For example, teams can monitor their own code,

but will not see full benefits if both application

and infrastructure are not monitored and used

to make decisions.

How is this different from previous research
and what does it mean for you?

In previous years, we simply tested the
importance of automated testing and CI, but
didn’t look at the relationship between the two.
This year, we found that automated testing
drives improvements in CI. It means that smart
investments in building up automated test
suites will help make CI better.

17 Our research shows that effective trunk-based development is characterized by fewer than three active
branches and branches and forks having lifetimes of less than a day before being merged to master.

https://cloud.google.com/devops

42

OPEN SOURCE
SOFTWARE DEVELOPMENTOrganization-level technical capabilities

In contrast to capabilities that can be implemented

and executed at the team level for quick impact,

some capabilities benefit from organization-level

coordination and sponsorship. Examples of these

kinds of capabilities are those that involve decisions

or design that span several teams, such as

architecture or policy (e.g., change management).

This year’s research revalidated the positive

impact of loosely coupled architecture on CD.

A loosely coupled architecture is when delivery

teams can independently test, deploy, and change

their systems on demand without depending

on other teams for additional support, services,

resources, or approvals, and with less back-and-

forth communication. This allows teams to quickly

deliver value, but it requires orchestration at a

higher level.

Our research has focused on software development and delivery in
an organizational context, where a team’s full-time job is developing
and delivering software, allowing members to coordinate their
development and releases around a much tighter check-in and
release cadence. We have found that trunk-based development with
frequent check-in to trunk and deployment to production is
predictive of performance outcomes.

But what about open source software development?

Open source projects have a different set of timelines and
expectations since they are largely community-driven, with
community members from around the world sending patches to
projects when their schedule allows. Because open source projects
must support collaboration with people around the world and
across many organizations (including freelancers, hobbyists,
and developers at all levels), open source project releases are
cut in a different style than a continuous delivery software practice.
They are typically cut from a branch at a specific point in time after
significant testing.

Our research findings extend to open source development in some
areas:

• Committing code sooner is better: In open source projects,
many have observed that merging patches faster to prevent
rebases helps developers move faster.

• Working in small batches is better: Large “patch bombs” are
harder and slower to merge into a project than smaller, more
readable patchsets since maintainers need more time to review
the changes.

Whether you are working on a closed-source code base or an open
source project, short-lived branches; small, readable patches; and
automatic testing of changes make everyone more productive.

https://cloud.google.com/devops

43 Accelerate: State of DevOps 2019 | How Do We Improve SDO & Organizational Performance?

Architectural approaches that enable this strategy

include the use of bounded contexts and APIs

as a way to decouple large domains, resulting

in smaller, more loosely coupled units. Service-

oriented architectures are supposed to enable

these outcomes, as should any true microservices

architecture.18 Architecture designs that permit

testing and deploying services independently

help teams achieve higher performance.

It takes a lot of code to run our systems: Facebook

runs on 62 million lines of code (excluding backend

code), the Android operating system runs on 12 to

15 million lines of code, and a typical iPhone app

has 50,000 lines of code.19 With the huge amount

of code it takes to run our organizations, we wanted

to investigate which code-related practices really

help drive performance (or if they do at all),

a construct we called code maintainability.

Our analysis found that code maintainability

positively contributes to successful CD. Teams

that manage code maintainability well have

systems and tools that make it easy for

developers to change code maintained by

other teams, find examples in the codebase,

reuse other people’s code, as well as add,

upgrade, and migrate to new versions of

dependencies without breaking their code.

Having these systems and tools in place not

only contributes to CD, but also helps decrease

technical debt, which in turn improves productivity,

something you’ll see in a later section.

Organizations that elevate code maintainability

provide real advantages to their engineers.

For example, managing dependencies is hard.

Updating a dependency could open a rabbit

hole to issues such as breaking API changes,

18 It's important to avoid premature decomposition of new systems into services, or overly fine-grained services, both of which can inhibit delivery performance.
Martin Fowler covers this in MonolithFirst https://martinfowler.com/bliki/MonolithFirst.html.

19 https://www.businessinsider.com/how-many-lines-of-code-it-takes-to-run-different-software-2017-2

https://cloud.google.com/devops
https://www.businessinsider.com/how-many-lines-of-code-it-takes-to-run-different-software-2017-2

44

updating a transitive dependency, creating

incompatible dependencies (for example,

the diamond dependency issue), and breaking

functionality. Tooling that can help avoid

these errors or illuminate the consequences

of code changes can improve design decisions

and code quality for all engineers.

Debates about tools or code organization

are easy to fall into. It’s important to focus on

outcomes: Are we enabling or preventing

software performance and productivity?

Advanced users such as developers, testers, and sysadmins were
previously neglected when considering the usability of their tooling.
Sometimes management assumed that—as relative technology
experts—the technologists could figure out any tool they were given.
This isn’t an uncommon mindset. In World War II, pilots were
selected and trained based on their ability to operate overly
complex cockpits. Then usability experts realized that complex work
like piloting an aircraft was difficult enough. It was better to design a
cockpit to be easy-to-use and understandable, and let pilots spend
their attention safely piloting the aircraft.

Other times, usability needs are ignored because management
assumes that technologists’ needs are like those of regular end
users. Today, we know that power users (such as engineers) often
have special use cases, with unique design needs. Technologists
also include broader skill sets and backgrounds—such as UX, infosec,
and database engineers—as well as diverse abilities. Making tools
that are accessible and easy-to-use is an important consideration for
tool vendors.

With this in mind, in this year's research we studied the usability
of the tools used to deploy software because technical practices that
support software development and deployment are important to
speed and stability.

The usefulness and ease-of-use of this deployment tooling is highly
correlated with CI and CD. This makes sense, because the better
our tools are suited to our work, the better we are able to do it.
We also find this drives productivity, which you can read about
on page 55.

USEFUL, EASY-TO-USE
TOOLS FOR
DEPLOYING SOFTWARE

https://cloud.google.com/devops

45 Accelerate: State of DevOps 2019 | How Do We Improve SDO & Organizational Performance?

DISASTER RECOVERY TESTING
Every organization that runs mission-critical software systems should have a disaster

recovery plan. But creating plans without testing them is like creating backups without

also practicing restoring from backup regularly—that is to say, useless. We asked

respondents which kinds of disaster recovery testing their organizations perform.

Low Medium High Elite OVERALL

Table-top exercises that are not carried out on
real systems 35% 26% 27% 30% 28%

Infrastructure (including datacenter) failover 27% 43% 34% 38% 38%

Application failover 25% 46% 41% 49% 43%

Simulations that disrupt production-like test sys-
tems (including failure injection such as degrad-
ing network links, turning off routers, etc.)

18% 22% 23% 29% 23%

Simulations that disrupt production systems
(including failure injection such as degrading
network links, turning off routers, etc.)

18% 11% 12% 13% 12%

Creating automation and systems that disrupt
production systems on a regular, ongoing basis 9% 8% 7% 9% 8%

DISASTER RECOVERY TEST TYPES
BY PERFORMANCE PROFILE

https://cloud.google.com/devops

46 Accelerate: State of DevOps 2019 | How Do We Improve SDO & Organizational Performance?

Not all tests are performed using production

systems, which is a concern for two reasons.

First, it’s difficult (and often prohibitively expensive)

to create comprehensive reproductions of

production systems. Second, the types of incidents

that bring down production systems are often

caused by interactions between components

that are operating within apparently normal

parameters, which might not be encountered

in test environments. As systems become more

complex, these factors become more significant.

We asked how frequently organizations

perform disaster recovery tests on

production infrastructure:

• Simulations that disrupt production systems

(including failure injection such as degrading

network links, turning off routers, etc.)

• Infrastructure (including datacenter) failover

• Application failover

Only 40% of respondents perform disaster
recovery testing at least annually using one

or more of the methods listed. Organizations

that conduct disaster recovery tests are

more likely to have higher levels of service

availability—that is, the ability for technology

teams and organizations to make and keep

promises and assertions about the software

product or service they are operating.

Mike Garcia, Vice President of Stability &
SRE at Capital One, says, “It's not enough to
demonstrate you can deliver quickly on modern
cloud technology. Especially in a heavily regulated
industry like banking, we have obligations that
require us to prove our level of resiliency in our
responsibility to meet the needs of our customers.
... In order to do that, we have had to advance
beyond just demonstrating that we can failover
en masse… The idea is to progressively show
more advanced capabilities and automatic
resiliency through more sophisticated
chaos-testing techniques.”

https://cloud.google.com/devops

47

LEARNING FROM DISASTER
RECOVERY EXERCISESOrganizations that work together cross-

functionally and cross-organizationally

to conduct disaster recovery exercises see

improvements in more than just their systems.

Because these tests pull together so many

teams, they surface connections that many

forget or don’t realize exist, the exercises

also improve and strengthen the processes

and communication surrounding the systems

being tested, making them more efficient

and effective.

We also looked at whether organizations act on

what they discover in disaster recovery testing

exercises. Analysis shows that organizations

that create and implement action items based

on what they learn from disaster recovery

exercises are 1.4 times more likely to be in

the elite performing group.

Blameless post-mortems are an important aspect to
support growth and learning from failure. This is well-
documented in the literature and supported in our
previous research, which showed that conducting
blameless post-mortems contributes to a learning
culture and an organizational culture that optimizes
for software and organizational performance outcomes.

For a great read on disaster recovery exercises—from
both the viewpoint of their benefits even in light of their
expense, as well as a play-by-play from an SRE in the
middle of an exercise—check out Weathering the
Unexpected by Kripa Krishnan with Tom Limoncelli. 20

In this ACM Queue article, Kripa Krishnan, a director at
Google previously in charge of disaster recovery testing
(DiRT) exercises, makes the following observation:

“For DiRT-style events to be successful, an organization
first needs to accept system and process failures as a
means of learning. Things will go wrong. When they
do, the focus needs to be on fixing the error instead of
reprimanding an individual or team for a failure
of complex systems.”

20 https://queue.acm.org/detail.cfm?id=2371516

https://cloud.google.com/devops
https://queue.acm.org/detail.cfm?id=2371516

48 Accelerate: State of DevOps 2019 | How Do We Improve SDO & Organizational Performance?

CHANGE MANAGEMENT
Making changes to software and production systems is often

complex and bureaucratic. Two factors are responsible for much

of this complexity: the need for coordination between teams,

and requirements of regulatory control, particularly in financial

services, healthcare, and government. While the complexities

involved in implementing regulatory control requirements are

beyond the influence of leadership and practitioners, we can

influence the role that team coordination plays in change

management—and that role is changing.

For example, segregation of duties, which states that changes

must be approved by someone other than the author, is often

required by regulatory frameworks.21 While we agree that no

individual should have end-to-end control over a process

(the intent of this control), there are lightweight, secure ways

to achieve this objective that don’t suffer the same coordination

costs as heavyweight approaches.

21 Examples include the Payment Card Industry Data Security Standard (PCI-DSS) and the NIST Risk
Management Framework used by US Federal Government agencies.

https://cloud.google.com/devops

49

One approach is to require every change be

approved by someone else on the team as part

of code review, either prior to commit to version

control (as part of pair programming) or prior

to merge into master.

This can be combined with automated thresholds

that bound changes. For example, you may

implement checks to not allow developers to push

a change (even with peer review) that will increase

compute or storage costs over a certain threshold.

This lightweight, straightforward-to-implement

process presents a clear opportunity for

practitioners to improve change management.

Some proponents, supported by IT service

management (ITSM) frameworks, claim that formal

change approval processes lead to more stability,

and point out that these have been the norm in

industry for decades.

Using code review to implement segregation of duties
requires that all changes to production systems should
be recorded in a change management system that lists
the change along with the person or people who
authored it, and logs authenticated approval events.
 If you’re using version control as the source of truth
for all changes to your systems (a technique from the
paradigm known as “infrastructure as code” or “gitops”),
you simply need to be able to record who approved each
change. This has the added benefit of making the review
and submit process highly auditable. Our previous
research also shows that comprehensive use of version
control, including for system configuration and scripting,
drives performance.

IMPLEMENTING
SEGREGATION
OF DUTIES

https://cloud.google.com/devops

50 Accelerate: State of DevOps 2019 | How Do We Improve SDO & Organizational Performance?

Others, backed by lean and agile philosophies,

argue that more streamlined change approvals

lead to faster feedback, better information flow,

and better outcomes. To investigate these

hypotheses, we created two new constructs—

one that captures a lightweight, clearly understood

change approval process, and another that

captures a more formal, heavyweight change
approval process—and tested their impact on

software delivery performance.

Heavyweight change process
We found that formal change management

processes that require the approval of an external

body such as a change advisory board (CAB)

or a senior manager for significant changes

have a negative impact on software delivery

performance. Survey respondents were 2.6 times

more likely to be low performers if their organization

had this kind of formal approval process in place.

This expands on our previous research, which

found that heavyweight change approvals

process were negatively correlated with change

failure rates.22

The motivation behind the heavyweight change

management processes proposed by ITSM

frameworks is reducing the risk of releases.

To examine this, we investigated whether a

more formal approval process was associated

with lower change fail rates and we found no

evidence to support this hypothesis, consistent

with earlier research.23 We also examined whether

introducing more approvals results in a slower

process and the release of larger batches less

frequently, with an accompanying higher impact

on the production system that is likely to be

associated with higher levels of risk and thus

22,23 Velasquez, N., Kim, G., Kersten, N., & Humble, J. (2014). State of DevOps Report: 2014. Puppet Labs.

https://cloud.google.com/devops

51

higher change fail rates. Our hypothesis was

supported in the data. This has important

implications for organizations working to reduce risk

in their release process: Organizations often respond

to problems with software releases by introducing

additional process and more heavyweight approvals.

Analysis suggests this approach will make things worse.

We recommend that organizations move away from

external change approval because of the negative

effects on performance. Instead, organizations

should “shift left” to peer review-based approval

during the development process. In addition to peer

review, automation can be leveraged to detect,

prevent, and correct bad changes much earlier in

the delivery lifecycle. Techniques such as continuous

testing, continuous integration, and comprehensive

monitoring and observability provide early and

automated detection, visibility, and fast feedback.

In this way, errors can be corrected sooner than

would be possible if waiting for a formal review.

Continuous delivery offers a superior risk management
approach compared to traditional change management
processes, but there is still an important role for the CAB.
As organizations become more complex, facilitating
notification and coordination among teams is
increasingly critical. Our previous research has
established that fostering information flow is essential to
developing a high-performance, mission-driven culture.
Since approving each individual change is impossible in
practice in the continuous paradigm, the CAB should
focus instead on helping teams with process-
improvement work to increase the performance of
software delivery. This can take the form of helping
teams implement the capabilities that drive
performance by providing guidance and resources.
CABs can also weigh in on important business decisions
that require a trade-off and sign-off at higher levels of
the business, such as the decision between time-to-
market and business risk.

You’ll note the new role of the CAB is strategic. By shifting
detailed code review to practitioners and automated
methods, time and attention of those in leadership and
management positions is freed up to focus on more
strategic work. This transition, from gatekeeper to
process architect and information beacon, is where we
see internal change management bodies headed, and is
consistent with the practices of organizations that excel
at software delivery performance.

WHAT HAPPENS TO
THE CAB IN THE CONTINUOUS
DELIVERY PARADIGM?

https://cloud.google.com/devops

52 Accelerate: State of DevOps 2019 | How Do We Improve SDO & Organizational Performance?

Clear change process
While moving away from traditional, formal change

management processes is the ultimate goal, simply

doing a better job of communicating the existing

process and helping teams navigate it efficiently has

a positive impact on software delivery performance.

When team members have a clear understanding

of the process to get changes approved for

implementation, this drives high performance.

This means they are confident they can get changes

through the approval process in a timely manner

and know the steps it takes to go from “submitted”

to “accepted” every time for all the types of changes

they typically make. Survey respondents with a

clear change process were 1.8 times more likely

to be in elite performers

In our work with large organizations, change

management is consistently one of the biggest

constraints. Removing it requires work at multiple levels.

Teams can implement continuous integration,

continuous testing, and peer review to find

bad changes as quickly as possible while also

satisfying segregation of duties. And only our

technical practitioners have the power to

build and automate the change management

solutions we design, making them fast, reliable,

repeatable, and auditable.

Leaders at every level should move away from a

formal approval process where external boards

act as gatekeepers approving changes, and

instead move to a governance and capability

development role. After all, only managers have

the power to influence and change certain levels

of organizational policy. We have seen

exponential improvements in performance—

throughput, stability, and availability—in just

months as a result of technical practitioners

and organizational leaders working together.

https://cloud.google.com/devops

53 Accelerate: State of DevOps 2019 | How Do We Improve SDO & Organizational Performance?

CULTURE OF PSYCHOLOGICAL SAFETY
Culture is often lauded as the key to DevOps and technology

transformations by practitioners and champions who lead efforts

in organizations. Indeed, Davis and Daniels cite culture as a key

factor in successful and scalable technology efforts in their book

Effective DevOps.24 Our own research has found that an organizational

culture that optimizes for information flow, trust, innovation, and

risk-sharing is predictive of SDO performance.25

Research from a large two-year study at Google found similar results:26

that high-performing teams need a culture of trust and psychological

safety, meaningful work, and clarity. This team environment allows

members to take calculated and moderate risks, speak up, and be more

creative. Some have wondered if these results can also be true outside

of Google. Is this kind of culture beneficial to the wide mix of enterprises,

tools, and engineering skills we see in other organizations? Or does it

only hold true for the engineers that pass Google’s notoriously rigorous

interviews, in a large enterprise, supported by huge infrastructure

and only a certain type of code base?

24 Davis, J., & Daniels, R. (2016). Effective DevOps: building a culture of collaboration, affinity, and tooling at scale. O'Reilly Media, Inc.
25 This research was based on an organizational culture framework originally proposed by the sociologist Dr. Ron Westrum.

This model is outlined in the 2018 Accelerate State of DevOps Report.
26 https://rework.withgoogle.com/blog/five-keys-to-a-successful-google-team/

https://cloud.google.com/devops
http://services.google.com/fh/files/misc/state-of-devops-2018.pdf
https://rework.withgoogle.com/blog/five-keys-to-a-successful-google-team/

54

TECHNOLOGY’S IMPACT
ON ORGANIZATIONAL
PERFORMANCE

To answer that question, we shifted our measure of

culture to the questions that the Project Aristotle team

included in its research.27 Our analysis found that this

culture of psychological safety is predictive of

software delivery performance, organizational

performance, and productivity. Although Project

Aristotle measured different outcomes, these results

indicate that teams with a culture of trust and

psychological safety, with meaningful work and

clarity, see significant benefits outside of Google.

The ability to deliver software rapidly and reliably and provide high
levels of availability is a powerful tool. It enables organizations to
easily and quickly prototype new products and features and test
the impact on users without impacting existing users. It also allows
organizations to keep up with compliance and regulatory changes,
and deliver critical software patches and updates necessary for
security quickly and reliably. If leveraged effectively, organizations
that can achieve high levels of SDO performance should be able to
better respond to technological change and shifts in the market
and create superior products and services. This, in turn, helps
organizations better achieve their desired organizational
outcomes, both commercial and non-commercial. Our analysis
this year shows elite performers are twice as likely to meet
or exceed their organizational performance goals.

The organizational performance measures we use are derived
from academic literature and capture both commercial28 and

non-commercial29 goals, including:

• Profitability

• Productivity

• Market share

• Number of customers

• Quality of products or services

As with last year, our second-order construct of SDO performance
predicts organizational performance, and does so better than
software delivery performance or availability do alone.

• Operating efficiency

• Customer satisfaction

• Quality of products
or services provided

• Achieving organizational
or mission goals

28 Widener, S. K. (2007). An empirical analysis of the levers of control framework.
Accounting, Organizations and Society, 32(7-8), 757-788.

29 Cavalluzzo, K. S., & Ittner, C. D. (2004). Implementing performance measurement innovations:
evidence from government. Accounting, Organizations and Society, 29(3-4), 243-267.

27 Many thanks to the Project Aristotle team for sharing their research instrument.

STRUCTURE AND CLARITY
Team members have clear roles, plans, and goals

MEANING
Work is personally important to team members

IMPACT
Team members think their work matters

and creates change

PSYCHOLOGICAL SAFETY
Team members feel safe to take risks and

be vulnerable in front of each other

DEPENDABILITY
Team members get things done on time and meet

Google's high bar for excellence

1

2

3

4

5

https://cloud.google.com/devops

Another important goal in teams and
organizations is improving productivity
to get more value out of your transformation
and your employees. This marks the first
year we investigate productivity: how
organizations can support it with smart
investments in tools and information,
how technical debt interrupts it,
and how it affects employee work/life
balance and burnout.

H O W D O W E
I M P R O V E
P R O D U C T I V I T Y ?

56 Accelerate: State of DevOps 2019 | How Do We Improve Productivity?56

Most agree that productivity is important: Productive

engineers are able to do their work more efficiently,

giving them more time to re-invest into other work,30

such as documentation, refactoring, or doing more

of their core function to deliver additional features

or build out additional infrastructure.31

But what is productivity, and how should we measure

it? Productivity cannot be captured with a simple

metric such as lines of code, story points, or

bugs closed; doing so results in unintended

consequences that sacrifice the overall goals

of the team.32 For example, teams may refuse to

help others because it would negatively impact

their velocity, even if their help is important to

achieve organizational goals.

IMPROVING
PRODUCTIVITY

30 We point the reader to a discussion of productivity by noted economist Hal Varian
https://www.wsj.com/articles/silicon-valley-doesnt-believe-u-s-productivity-is-down-1437100700

31 We discuss the benefits of reinvesting the time savings from productivity gains (vs. seeing them as cost savings to be
eliminated) in our 2017 ROI white paper “Forecasting the Value of DevOps Transformations.” This is not a new idea;
economists have investigated this and Dr Varian addresses it in his WSJ article cited above. cloud.google.com/devops

32 This can also be summarized by Goodhart’s Law, which states that "When a measure becomes a target, it ceases to
be a good measure." By focusing only on easy-to-measure, local metrics, teams often set those as their targets, at the
expense of global goals that truly further organizational outcomes. See Chapter 2 of Accelerate: The Science of Lean
Software and DevOps for more detail.

https://cloud.google.com/devops
https://www.wsj.com/articles/silicon-valley-doesnt-believe-u-s-productivity-is-down-1437100700
http://cloud.google.com/devops
https://books.google.com/books/about/Accelerate.html?id=85XHAQAACAAJ
https://books.google.com/books/about/Accelerate.html?id=85XHAQAACAAJ

57 Accelerate: State of DevOps 2019 | How Do We Improve Productivity?

Researchers have discussed this topic at length,

and most have come to the same conclusion:

Productivity is the ability to get complex,
time-consuming tasks completed with
minimal distractions and interruptions.

Many of us describe this as getting into a good

work flow or rhythm.

To use this model, locate the goal you want

to improve in the figure, and then identify

the capabilities that impact it. For example,

if your goal is to reduce technical debt, these

capabilities are code maintainability, having

a loosely coupled architecture, and monitoring.

n.s.

PRODUCTIVITY

Years of experience
(control)

CULTURE OF PSYCHOLOGICAL SAFETY

Burnout

Loosely coupled architecture Monitoring

INTERNAL SEARCH

CODE MAINTAINABILITY

USEFUL, EASY-TO-USE TOOLS

EXTERNAL SEARCH -

- - -

-

TECHNICAL DEBT

WORK RECOVERY

Construct

Control variable

n.s.: Not significant

BOLD Newly investigated this year

 Common goal
for team or organization

Predictive relationship

Negative predictive relationship-

https://cloud.google.com/devops

58 Accelerate: State of DevOps 2019 | How Do We Improve Productivity?

USEFUL, EASY-TO-USE TOOLS
Useful and easy-to-use tools are now considered a must-have for

consumer technologies, but these obvious characteristics are often

overlooked among technology professionals who assume they are

experts and can make any tool or technology work. (Or because those

purchasing tools for these groups assume usability is less important

for technologists, or are optimizing for other factors such as cost,

licensing terms, or vendor management.) In fact, the opposite is true:

When building complex systems and managing business-critical

infrastructure, tools are even more important because the work

is more difficult.

We focused on tools used in deploying software through

the CI/CD and test automation toolchain because they are

at the heart of DevOps. We found that these two attributes

drive productivity:

• How easy it is to use the toolchain (including

straightforward and easy interactions and operation)

• How useful the toolchain is in accomplishing

job-related goals

likely to have
easy-to-use tools

1.5
TIMES MORE

HIGHEST PERFORMING
ENGINEERS

https://cloud.google.com/devops

59 Accelerate: State of DevOps 2019 | How Do We Improve Productivity?

Low Medium High Elite

A mix of proprietary
tools, open source, and
commercial off-the-shelf
(COTS) software

30% 34% 32% 33%

Mainly open source and
COTS, heavily customized 17% 8% 7% 10%

Mainly open source
and COTS, with little
customization

14% 21% 18% 20%

Primarily COTS
packaged software 8% 12% 8% 4%

Primarily developed
in-house and proprietary
to my organization

20% 6% 5% 6%

Primarily open source,
heavily customized 6% 7% 5% 12%

Primarily open source,
with little customization 5% 12% 24% 15%

TOOL USAGE BY
PERFORMANCE PROFILE

And what do those tools look like? We dug into

the data by performance profile and saw some

interesting patterns:

• The strongest concentration of fully

proprietary software is seen in low

performers, while the lowest concentration

is seen among high and elite performers.

Proprietary software may be valuable, but it

comes at great cost to maintain and support.

It’s no surprise that the highest performers

have moved away from this model.

• There is a relatively equal concentration of

commercial off-the-shelf (COTS) software with

little customization. Some may wonder why

high performers can use COTS and still be high

performers, especially if the message continues

to be that “software is eating the world” and

we must be creating our own software.

https://cloud.google.com/devops

60 Accelerate: State of DevOps 2019 | How Do We Improve Productivity?

As Martin Fowler outlines,33 companies

should be thoughtful about which software

is strategic and which is merely utility. By

addressing their utility needs with COTS

solutions and minimizing customization,

high performers save their resources for

strategic software development efforts.

We also see that elite performers automate and

integrate tools more frequently into their toolchains

on almost all dimensions. Although automation

may be seen as too expensive to implement (we

often hear, “I don’t have time or budget to automate—

it’s not a feature!”), automation is truly a sound

investment.34 It allows engineers to spend less

time on manual work, thereby freeing up time

to spend on other important activities such as

new development, refactoring, design work, and

documentation. It also gives engineers more

confidence in the toolchain, reducing stress

in pushing changes.33 Martin Fowler, MartinFowler.com, UtilityVsStrategicDichotomy.
 https://martinfowler.com/bliki/UtilityVsStrategicDichotomy.html

34 This is a site reliability engineering (SRE) best practice: reduce toil, which is work without productivity.

Low Medium High Elite

Automated build 64% 81% 91% 92%

Automated unit tests 57% 66% 84% 87%

Automated acceptance tests 28% 38% 48% 58%

Automated performance tests 18% 23% 18% 28%

Automated security tests 15% 28% 25% 31%

Automated provisioning
and deployment to
testing environments

39% 54% 68% 72%

Automated deployment
to production 17% 38% 60% 69%

Integration with
chatbots / Slack 29% 33% 24% 69%

Integration with production
monitoring and observability
tools

13% 23% 41% 57%

None of the above 9% 14% 5% 4%

AUTOMATION AND INTEGRATION
BY PERFORMANCE PROFILE

https://cloud.google.com/devops
https://martinfowler.com/bliki/UtilityVsStrategicDichotomy.html

61 Accelerate: State of DevOps 2019 | How Do We Improve Productivity?

We wondered if the amount of juggling work would be
significantly different among our highest and lowest
performers—after all, productivity is the ability to get
work done and feel like you are in “a flow.”

To capture this, we asked respondents a few questions:

• How many roles they juggle or different types of
work do they do regardless of their official job title

• How many projects they switched between in a day

• How many projects they were working on overall

Surprisingly, we did not detect significant differences
between low, medium, high, and elite performers.
Therefore, we cannot conclude that how well teams
develop and deliver software affects the number of
roles and projects that respondents juggle. There is
no such thing as “push through this phase and it will
get significantly better.” Instead, we should take steps
to make our work sustainable. That is done through
process improvement work and automation, which
will reduce toil and make the work repeatable,
consistent, fast, scalable, and auditable. It will
also free us up to do new, creative work.

PRODUCTIVITY,
BURNOUT, AND
JUGGLING WORK

Technical professionals and tools
Our work in 2017 found that empowered teams

who make their own decisions about tools and

implementations contribute to better software

delivery performance. In this year’s research, we

see that given the opportunity, high performers

choose useful and usable tools, and these kinds

of tools improve productivity.

This has important implications for product

design. Products that have both utility and

usability are more likely to be adopted by

technology professionals, and when they are

used, have better outcomes. These kinds of

tools should be prioritized by industry leaders.

It's not enough to deliver products that are

feature complete; they also need to be usable

to be adopted and deliver value during a

DevOps transformation.

https://cloud.google.com/devops

62 Accelerate: State of DevOps 2019 | How Do We Improve Productivity?

INTERNAL AND EXTERNAL SEARCH
Finding the right information to help solve a problem, debug an

error, or find a similar solution quickly and easily can be a key

factor in getting work done and maintaining the flow of work. This

is especially true in today’s tech environment, which is comprised

of increasingly complex systems. We found that having access to

information sources supports productivity. These information

sources come in two categories: internal and external search.

• Internal search: Investments that support document and code

creation as well as effective search for company knowledge

bases, code repositories, ticketing systems, and other docs

contribute to engineering productivity. Those who used internal

knowledge sources were 1.73 times more likely to be productive.

Providing developers, sysadmins, and support staff with the

ability to search internal resources allows them to find answers

that are uniquely suited to the work context (for example, using

“find similar” functions) and apply solutions faster. In addition,

internal knowledge bases that are adequately supported and

fostered create opportunities for additional information sharing

and knowledge capture.

likely to be productive

1.73
TIMES MORE

likely to be productive

1.67
TIMES MORE

USE OF
INTERNAL SEARCH

USE OF
EXTERNAL SEARCH

https://cloud.google.com/devops

63 Accelerate: State of DevOps 2019 | How Do We Improve Productivity?

For example, people may pose questions when

they find solutions that almost fit, prompting

answers and discussion from the internal

community, which feeds additional information

into the knowledge base. If the organization has

invested in systems that can easily search across

all types of information and data, the culture can

contribute to a “virtuous cycle” of knowledge

sharing. Some organizations are leveraging

machine learning technologies to identify and

suggest candidate solutions to internal search

as well.

• External search: These include external sources

such as search engines and Stack Overflow. Our

analysis found that those who used external search

in their work were 1.67 times more likely to report

feeling productive in their work. External search is

important because these technologies provide

strong communities for learning and growing (and

recruiting, an important side benefit) and

provide support for the use and adoption of

public cloud and open source tooling. That is,

leveraging commonly used external tools and

systems with a strong user community and

good ecosystem allows tech professionals to

troubleshoot with the world, while proprietary

and home-grown implementations only allow

experts within an organization to weigh in on

possible solutions. We see support for this in

the data. In our 2018 research, elite performers

leveraged and planned to expand their use

of open source. In this year’s research, we see

that eite performers use more open source

tooling and low performers have the highest

use of proprietary data (see page 59); these

technology choices are bound to have an

impact on productivity.

https://cloud.google.com/devops

64 Accelerate: State of DevOps 2019 | How Do We Improve Productivity?

TECHNICAL DEBT
Technical debt was introduced in 1992 by Ward Cunningham35 to describe what

happens when we fail to adequately maintain what he calls “immature” code.

35 http://c2.com/doc/oopsla92.html

 Although immature code may work fine and be completely acceptable to the
customer, excess quantities will make a program unmasterable, leading to extreme
specialization of programmers and finally an inflexible product. Shipping first-time
code is like going into debt. A little debt speeds development so long as it is paid
back promptly with a rewrite... The danger occurs when the debt is not repaid.
Every minute spent on not-quite-right code counts as interest on that debt. Entire
engineering organizations can be brought to a standstill under the debt load of an
unconsolidated implementation.”

In today’s complex systems, technical debt can occur in scripts, configuration

files, and infrastructure as well as application code. Technical debt includes

code or systems with:
• Known bugs that go unfixed in favor of new features

• Insufficient test coverage

• Problems related to low code quality
or poor design

• Code or artifacts that aren’t cleaned up
when no longer used

• Implementations that the current team doesn’t have expertise in,
and therefore can’t effectively debug or maintain

• Incomplete migration

• Obsolete technology

• Incomplete or outdated documentation or missing comments

“

https://cloud.google.com/devops
http://c2.com/doc/oopsla92.html

65 Accelerate: State of DevOps 2019 | How Do We Improve Productivity?

We found that technical debt negatively impacts

productivity, that respondents with high technical

debt were 1.6 times less productive, and that the

highest performers were 1.4 times more likely to

have low technical debt.

Coping with technical debt
Ward Cunningham states that “the best antidote [to

changing systems] is more complete familiarity with

the product and its implementation.” When engineers

can understand changes, they can accept them.

Today’s complex infrastructures and distributed

systems make it impossible for engineers to maintain

a mental model of the complete state of the system.

In addition, supporting these complex systems has

led to more specialized professionals who cannot

have complete familiarity with the entire system.36

We can help engineers build mental models by

architecting for flexible, extensible, and visible

systems to reduce technical debt.

36 In order to have complete visibility into the system, one would have to be a full stack developer.
Aside from the obvious definitional challenge—What is full stack? Chips to CSS?—many in the
industry agree that a full stack developer isn’t possible or desirable.

How can we actually reduce technical debt and not
just cope with it? One approach is refactoring.
Refactoring is a “disciplined technique for
restructuring an existing body of code, altering its
internal structure without changing its external
behavior,” and Martin Fowler points out that
refactoring should be part of daily work. Better tooling
with robust refactoring support built in are also
important. In fact, many large organizations have
invested in tools for doing code refactors across their
code base; for example, Facebook open sourced its
tool fastmod and Google has open sourced ClangMR.

ACTIVELY
REDUCING
TECHNICAL DEBT

https://cloud.google.com/devops
https://github.com/facebookincubator/fastmod
https://ai.google/research/pubs/pub41342

66 Accelerate: State of DevOps 2019 | How Do We Improve Productivity?

CULTURE OF
PSYCHOLOGICAL SAFETY

A culture that values psychological safety,

trust, and respect contributes to productivity

by letting employees focus on solving problems

and getting their work done rather than

politics and fighting. This echoes work by other

researchers; as we discuss in the section earlier,

a study by Google found that this same kind

of culture leads to more effective teams.

The findings on productivity can also apply to open
source projects. Contributors can go from zero to
productive on open source projects faster if the
documentation for how to contribute is up-to-date,
simple, and consistent with other open source
projects. A large project with a custom and outdated
contribution process will have a hard time getting
new contributors since the path to entry is too complex.
Pair a complicated contribution process with technical
debt and your would-be contributors will view your
project as “read-only.” Applying all the same best
practices mentioned here to your open source project
will get new contributors into the flow much faster
and grow your community in the most productive way.

PRODUCTIVITY AND
OPEN SOURCE PROJECTS

https://cloud.google.com/devops

67 Accelerate: State of DevOps 2019 | How Do We Improve Productivity?

ADDITIONAL BENEFITS OF IMPROVED PRODUCTIVITY
The benefits to the team and organization from higher productivity

are usually obvious: more work gets done, so we deliver more value.

But what about benefits to the people doing the work?

Work Recovery
Research shows that productivity has a positive impact on work recovery,

and we find support for that in our data as well. Work recovery is the ability

to cope with work stress and detach from work when we are not working.

Some call this “leaving work at work,” and research shows that people who

can detach from work have better well-being and handle work-related

stress better. The reverse of this is also important: Feeling overworked leads

to difficulty detaching, which leads to burnout and lower life satisfaction.37

Burnout
Burnout has been recognized by the World Health Organization as a

condition that results from unmanaged chronic workplace stress,38

and it is more than just being tired. Burnout is a combination of exhaustion,

37 Sonnentag, S., & Fritz, C. (2015). Recovery from job stress: The stressor-detachment model as an integrative framework. Journal of Organizational Behavior, 36(S1), S72-S103.
https://onlinelibrary.wiley.com/doi/abs/10.1002/job.1924

38 World Health Organization, Burn-out an "occupational phenomenon": International Classification of Diseases.
https://www.who.int/mental_health/evidence/burn-out/en/

https://cloud.google.com/devops
https://onlinelibrary.wiley.com/doi/abs/10.1002/job.1924
https://www.who.int/mental_health/evidence/burn-out/en/

68 Accelerate: State of DevOps 2019 | How Do We Improve Productivity?

cynicism, and inefficacy at work. It is often seen

in complex, high-risk work in hospitals, air traffic

control, and technology,39 and research shows

that stressful jobs can be as bad for physical

health as secondhand smoke40 and obesity.41

In extreme cases, burnout can lead to family

issues, clinical depression, and even suicide.

In this year’s research, we found that work

recovery can reduce burnout, which confirms

other research. We also revalidated previous

years’ research and found that good technical

practices and improved process (in the form of

clear change management) can reduce burnout.

We see that the highest performers are half as

likely to report feeling burned out. Said another

way, low performers are twice as likely to report

feeling burned out.

Productivity has a positive impact on work recovery. Since this can
be a key to reducing stress and burnout, how can we support it?

Research shows that there are five keys to promote work recovery:

Psychological detachment is the ability to stop thinking of work
outside of work. To promote this, consider electronic barriers that
help keep work stress at work.

Relaxation is not a luxury that we indulge on vacation; it’s a key
component of productivity. Make a routine out of giving yourself
time to recover.

Mastery of a skill outside work promotes a positive outlook,
reduces stress, and promotes healthy relationships. Practice
skills outside of work that bring you joy.

A lack of control causes stress. Balance a lack of control over
work demands with active pursuits outside of work, which
you can control.

Foster a culture that encourages stepping away from work.
Management in particular can set the tone that people are
expected to go home and not work on evenings and weekends.
Practitioners can support this culture by disconnecting when
they’re not at work, and encouraging colleagues to do the same.*

* A culture of psychological safety is strongly correlated with work recovery,
and can help support it. This is true because team members can feel safe to talk
about stress, workloads, and taking time off when they head home. We didn’t test
a predictive relationship because our measure of culture didn’t specifically ask
about “supporting and encouraging taking time away from work,” and those kinds
of cultures have been shown to increase work recovery.

HOW TO SUPPORT
WORK RECOVERY

39 While some claim technology is not high-risk work, the stresses of pushing the wrong code can be very real:
Errors that have the potential to be very public or have life-changing implications (such as writing software
that supports hospitals or healthcare systems) is the reality for many in technology.

40 Goh, J., Pfeffer, J., Zenios, S. A., & Rajpal, S. (2015). Workplace stressors & health outcomes: Health policy
for the workplace. Behavioral Science & Policy, 1(1), 43-52.

41 Chandola, T., Brunner, E., & Marmot, M. (2006). Chronic stress at work and the metabolic syndrome:
prospective study. BMJ, 332(7540), 521-525.

1

2

3

4

5

https://cloud.google.com/devops

H O W D O W E
T R A N S F O R M :
W H A T R E A L L Y
W O R K S

We are often asked how companies
spread new ways of work throughout
their organization. Constant restructuring
and reorganizing isn’t sustainable due
to its short-term negative impact on
productivity, and we know of several
organizations who have executed major
transformations that haven’t undergone
a reorg. While there isn’t a golden
path to success, one thing is clear:
A DevOps transformation is not a
passive phenomenon. This year we
sought to identify the most common
approaches for spreading DevOps best
practices throughout an organization.

70 Accelerate: State of DevOps 2019 | How Do We Transform?70

We asked respondents to share how their teams and

organizations spread DevOps and Agile methods.

Respondents could select one or more of

the following approaches:*

• Training Center
(sometimes referred to as a DOJO)

• Center of Excellence

• Proof of Concept but Stall

• Proof of Concept as a Template

• Proof of Concept as a Seed

TRANSFORM:
WHAT REALLY
WORKS

* Refer to Appendix B for detailed descriptions of each approach

• Communities of
Practice

• Big Bang

• Bottom-up or
Grassroots

• Mashup

These items were created based on commonly
used approaches that we have observed across
the industry. Once generated, we asked a
representative team of subject matter experts
to review the list. They gave us feedback and
helped us refine the options for clarity and
comprehensiveness.

https://cloud.google.com/devops

71 Accelerate: State of DevOps 2019 | How Do We Transform?

We examined the data across our SDO performance

clusters to examine the effectiveness of each

strategy. It is not a perfect proxy, but it does

provide a glimpse into what the highest and

lowest performers are doing to scale their

technology transformations.

Mashups are commonly reported in this sample

at 40%, but they lack sufficient funding and

resources in any particular investment. We

caution that without a strategy to guide a

technology transformation, organizations will often

make the mistake of hedging their bets and suffer

from “death by initiative”: identifying initiatives in

too many areas, which ultimately leads to under-

resourcing important work and dooming them

all to failure. Instead, it is best to select a few

initiatives and dedicate resources to ensure their

success (time, money, and executive and champion

practitioner sponsorship).42

High performers favor strategies that create

community structures at both low and high

levels in the organization, likely making them

more sustainable and resilient to reorgs and

product changes. The top two strategies

employed are Communities of Practice and

Grassroots, followed by Proof of Concept (PoC)

as a Template (a pattern where the PoC copies)

and PoC as a Seed.

Low performers tend to favor Training Centers

(also known as DOJOs) and Centers of Excellence

(CoE)—strategies that create more silos and

isolated expertise. They also attempt PoCs,

but these generally stall and don’t see success.

Some strategies see common patterns among

all performance profiles: All profiles report

adopting and supporting a mix of strategies.

42 This is much like the constraints model of continuous improvement we outline earlier: Set
short- and long-term goals, identify the key areas that need the most improvement to achieve
those goals, and allocate resources accordingly.

https://cloud.google.com/devops

72 Accelerate: State of DevOps 2019 | How Do We Transform?

No profiles report strong use of a Big Bang

strategy—though low performers use this the most

often (19% of the time)—and that’s probably for the

best. In our experience, this is an incredibly difficult

model to execute and should only be attempted in

the most dire of situations, when a “full reset”

is needed. In the Big Bang, everyone needs to

be on board for the long-haul, with resources

dedicated for a multi-year journey. This may

explain why this method is seen most often

among our low performers.

Why aren’t CoEs and
Training Centers recommended?

In general, Centers of Excellence (CoEs) are not

recommended because they centralize expertise

in one group. This creates several problems. First,

the CoE is now a bottleneck for the relevant

expertise for the organization and this cannot scale

as demand for expertise in the organization

grows. Second, it establishes an exclusive group

of “experts” in the organization, in contrast to

an inclusive group of peers who can continue

to learn and grow together. This exclusivity

fosters bad norms and behaviors and can chip

away at healthy organizational cultures. Finally,

the experts are removed from doing the work.

They are able to make recommendations

or establish generic “best practices” but

the path from the generic learning to the

implementation of real work is left up to

the learners. For example, experts will build

a workshop on how to containerize an

application, but they rarely or never actually

containerize applications. This disconnect

between theory and hands-on practice will

eventually threaten their expertise.

https://cloud.google.com/devops

73 Accelerate: State of DevOps 2019 | How Do We Transform?

While some see success in Training Centers,

they require dedicated resources and programs

to execute both the original program and

sustained learning. Many companies have set

aside incredible resources to make their

Training Programs effective: They have entire

buildings dedicated to a separate, creative

environment, and staff devoted to create

training materials and assess progress.

Additional resources are then needed to assure

that the learning is sustained and propagated

throughout the organization. The organization

has to provide support for the teams that

attended the Training Center, to help ensure

their skills and habits are continued back

in their regular work environments, and that old

work patterns aren’t resumed. If these resources

aren’t in place, organizations risk all of their

investments going to waste. Instead of a Center

where teams go to learn new technologies and

processes to spread to the rest of the

organization, new habits stay in the Center,

creating another silo, albeit a temporary one.

There are also similar limitations as in the CoE:

If only the Training Center staff (or other,

detached “experts”) are creating workshops

and training materials, what happens if they

never actually do the work?

https://cloud.google.com/devops

74 Accelerate: State of DevOps 2019 | How Do We Transform?

Low Medium High Elite

Training Center 27% 21% 18% 14%

Center of Excellence 34% 34% 20% 24%

Proof of Concept but Stall 41% 32% 20% 16%
Proof of Concept as a Template 16% 29% 29% 30%
Proof of Concept as a Seed 21% 24% 29% 30%
Communities of Practice 24% 51% 47% 57%
Big Bang 19% 19% 11% 9%
Bottom-up or Grassroots 29% 39% 46% 46%
Mashup 46% 42% 34% 38%

HEATMAP OF DEVOPS TRANSFORMATION
STRATEGIES BY PERFORMANCE PROFILE

https://cloud.google.com/devops

75 Accelerate: State of DevOps 2019 | How Do We Transform?

Scaling strategies that work

We conducted an additional cluster analysis to

understand the strategies used most often by

high and elite performers, and identify four model

patterns that emerge.

• Community Builders: This group focuses on

Communities of Practice, Grassroots, and PoCs

(as a Template and as a Seed, as described earlier).

This occurs 46% of the time.

• University: This group focuses on education and

training, with the majority of their efforts going into

Centers of Excellence, Communities of Practice,

and Training Centers. We see this pattern only 9%

of the time, suggesting that while this strategy

can be successful, it is not common and requires

significant investment and planning to ensure that

learnings are scaled throughout the organization.

• Emergent: This group has focused on

Grassroots efforts and Communities of

Practice. This appears to be the most hands-

off group and appears in 23% of cases.

• Experimenters: Experimenters appeared in

22% of cases. This group has high levels of

activity in all strategies except Big Bang and

DOJOs—that is, all activities that focus on

community and creation. They also include

high levels in PoC but Stall, and because they

are able to leverage this activity and remain

high performers suggests they use this strategy

to experiment and test out ideas quickly.

With these four patterns in mind, we can

begin to strategize how to organize a DevOps

transformation. High and elite performers have

started to develop strategies for scaling that

organizations can choose from to mirror those

efforts and improve their own performance.

https://cloud.google.com/devops

F I N A L
T H O U G H T S

Every decade has its own trendy software
methodology. While they all seem to feel better,
history proves them to be ineffective. However, we
see continued evidence that DevOps delivers value,
and for six consecutive years, we have statistically
verified key capabilities and practices that help
organizations improve their software development
and delivery using DevOps methods.

DevOps is not a trend, and will eventually be
the standard way of software development and
operations, offering everyone a better quality of life.

We thank everyone who contributed to this
year’s survey, and hope our research helps you
and your organization build better teams and
better software—while also leaving work at work.

77 Accelerate: State of DevOps 2019 | Methodology

M E T H O D O L O G Y
Our rigorous methodology goes beyond reporting raw numbers

and looks at the predictive relationships between SDO

performance, organizational performance, technical practices,

cultural norms, and productivity. In this section, we describe our

analysis methods, as well as how we enlisted survey respondents

and how we designed our questions, models, and constructs. For

more detail, we point you to Part II of our book Accelerate: The

Science of Lean Software and DevOps.

We welcome questions about our survey methodology

at dora-data@google.com.

Research design
This study employs a cross-sectional, theory-based design.

This theory-based design is known as inferential, or inferential

predictive, and is one of the most common types conducted

in business and technology research today. Inferential design is

used when purely experimental design is not possible and field

experiments are preferred—for example, in business, when data

collection happens in complex organizations, not in sterile lab

environments—and companies won’t sacrifice profits to fit into

control groups defined by the research team.

Target population and sampling method
Our target population for this survey was practitioners and leaders

working in, or closely with, technology work and transformations

and especially those familiar with DevOps. Because we don’t have

a master list of these people—we can describe them, but we don’t

know exactly where they are, how to find them, or how many of

them exist—we used snowball sampling to obtain respondents.

This means we promoted the survey via email lists, online promotions,

and social media, and also asked people to share the survey with their

networks, growing the sample like a snowball rolling down a hill

collects additional snow. Our sample is likely limited to organizations

and teams that are familiar with DevOps, and as such, may be doing

some of it. A key to overcoming limitations in snowball sampling is to

have a diverse initial sample. We accomplished this by leveraging our

own contact lists as well as those of our sponsors for our initial

sample, resulting in demographics and firmographics that largely

match industry trends.

Creating latent constructs
We formulated our hypotheses and constructs using previously

validated constructs wherever possible. When we needed to create

new constructs, we wrote them based on theory, definitions, and

expert input. We then took additional steps to clarify intent and

wording to ensure that data collected from the final survey would

have a high likelihood of being reliable and valid.43 We used

Likert-type44 questions for construct measurement, which

make it possible to perform more advanced analyses.

77

43 We used Churchill’s methodology: Churchill Jr, G. A. “A paradigm for developing better measures
of marketing constructs,” Journal of Marketing Research 16:1, (1979), 64–73.

44 McLeod, S. A. (2008). Likert scale. Retrieved from www.simplypsychology.org/likert-scale.html

https://cloud.google.com/devops
https://itrevolution.com/book/accelerate/
https://itrevolution.com/book/accelerate/
https://www.simplypsychology.org/likert-scale.html

78 Accelerate: State of DevOps 2019 | Methodology

Statistical analysis methods
• Cluster analysis. We use cluster analysis to identify our

software delivery performance profiles and scaling approaches

used by high performers. In this approach, those in one group

are statistically similar to each other and dissimilar from those

in other groups, based on our performance behaviors of

throughput and stability: deployment frequency, lead time,

time to restore service, and change fail rate. A solution using

Ward’s method45 was selected based on (a) change in fusion

coefficients, (b) number of individuals in each cluster (solutions

including clusters with few individuals were excluded), and (c)

univariate F-statistics.46 We used a hierarchical cluster-analysis

method because it has strong explanatory power (letting us

understand parent-child relationships in the clusters) and

because we did not have any industry or theoretical reasons to

have a predetermined number of clusters. That is, we wanted

the data to determine the number of clusters we should have.

Finally, our dataset was not too big (hierarchical clustering is

not suitable for extremely large datasets).

• Measurement model. Prior to conducting analysis, constructs

were identified using exploratory factor analysis with principal

component analysis using varimax rotation.47 Statistical tests

for convergent and divergent validity48 and reliability49 were

confirmed using average variance extracted (AVE), correlation,

cronbach’s alpha,50 and composite reliability.51 The constructs

passed these tests, therefore exhibiting good psychometric
properties.

• Structural equation modeling. The structural equation models

(SEM)52 were tested using Partial Least Squares (PLS) analysis,

which is a correlation-based SEM. We utilize PLS for our analysis

for several reasons: It does not require assumptions of

normality in the data, it is well suited to exploratory and

incremental research, and the analysis optimizes for prediction

of the dependent variable (vs testing for model fit of the data).53

SmartPLS 3.2.8 was used. When controlling for industry,54 no

significant effect was found except for retail (at p < 0.05 level),

as noted in the text. When controlling for enterprise

(organizations with 5,000 or more employees), a significant

effect was found (where p < 0.001). When controlling for years of

experience, no significant effect was found. All paths shown in

the SEM figures are p < .001, except the following, which are p <

0.05: Continuous delivery → Burnout, Change approvals →

Software delivery performance, Continuous integration →

Continuous delivery, Culture → Software delivery performance

(in the main model), and External search → Productivity,

Monitoring → Technical debt, and Code maintainability →

Technical debt (in the productivity model).

78

45 Ward, J.H. “Hierarchical Grouping to Optimize an Objective Function.” Journal of the American Statistical
Association 58(1963): 236–244.

46 Urich,D., and B. McKelvey. “General Organizational Classification: An Empirical Test Using the United States and
Japanese Electronic Industry.” Organization Science 1, no. 1 (1990): 99–118.

47 Straub, D., Boudreau, M. C., & Gefen, D. (2004). Validation guidelines for IS positivist research. Communications
of the Association for Information systems, 13(1), 24.

48 http://www.socialresearchmethods.net/kb/convdisc.htm
49 http://www.socialresearchmethods.net/kb/reliable.php
50 Nunnally, J.C. PsychometricTheory. NewYork: McGraw-Hill, 1978.
51 Chin, W. W. (2010). How to write up and report PLS analyses. In Handbook of partial least squares (pp. 655-690).

Springer, Berlin, Heidelberg.
52 http://www.statisticssolutions.com/structural-equation-modeling/
53 These methodology considerations are supported by: Chin, W.W. (1998). Issues and opinions on structural

equation modeling. MIS Quarterly, 22(2), vii-xvi; Gefen, D., Straub, D. W., & Rigdon, E. E. (2011). An update and
extension to SEM guidelines for administrative and social science research. MIS Quarterly, 35(2), iii-xiv.; and
Hulland (1999). Hulland, J. (1999). Use of partial east squares (PLS) in strategic management research: A review
of four recent studies. Strategic Management Journal, 20(2), 195-204.

54 http://methods.sagepub.com/reference/encyc-of-research-design/n77.xml

https://cloud.google.com/devops
http://www.socialresearchmethods.net/kb/convdisc.htm
http://www.socialresearchmethods.net/kb/reliable.php
http://www.statisticssolutions.com/structural-equation-modeling/
http://methods.sagepub.com/reference/encyc-of-research-design/n77.xml

79 Accelerate: State of DevOps 2019 | Acknowledgements79

ACKNOWLEDGEMENTS
Our research is informed by our work and conversations with

the DevOps, Agile, and broader technical community; many

thanks to all of our peers and colleagues who so openly share

their experiences, stories, success, challenges, and failures. We

use these to guide our literature review and shape our research

questions each year.

The authors would like to thank several people for their input

and guidance on the report this year. All acknowledgements

are listed alphabetically by type of contribution.

Thanks to Adrian Cockroft, Sam Guckenheimer, Gene Kim,

and Kelsey Hightower for overall guidance on the report;

your input as advisors helped highlight key research ideas

and direction.

For research advice, topic review, and input on measurement

items, we thank the Engineering Productivity Research team

at Google and in particular Collin Green, Ciera Jaspan,

Andrea Knight-Dolan, and Emerson Murphy-Hill. Special

thanks to the Project Aristotle team for their insights on

psychological safety and for sharing their research instrument.

Our work is not possible without the careful review of subject

matter experts; for their time on supplementary topic review

and input on measurement items, we are extremely grateful.

Many thanks to Angie Jones, Ashley McNamara, Betsy Beyer,

Bridget Kromhout, Courtney Kissler, J. Paul Reed, Mike McGarr,

Nathen Harvey, Seth Vargo, and Xavier Velasquez.

Special thanks to David Huh for providing analysis support for this

year’s survey and report.

We thank our detailed technical readers who offered feedback and

helped us refine the report: Nathen Harvey, Tom Limoncelli, Caitie

McCaffrey, Rachel Potvin, Corey Quinn, and Xavier Velasquez.

The authors would like to thank Cheryl Coupé for her careful eye

and meticulous work editing this year’s report.

Report layout and design by Siobhán Doyle.

https://cloud.google.com/devops

80 Accelerate: State of DevOps 2019 | Authors80

AUTHORS
Dr. Nicole Forsgren leads the DORA team, now with Google Cloud. She has led the

largest studies of DevOps to date, as the principal investigator on the State of DevOps

Reports for the past six years and lead author on the Shingo Publication Award-winning

book Accelerate: The Science of Lean Software and DevOps. She has been a professor,

sysadmin, and performance engineer. Nicole’s work has been published in several

peer-reviewed journals. Nicole earned her PhD in Management Information Systems

from the University of Arizona.

Jez Humble Jez Humble is co-author of several books on software including Shingo

Publication Award winner Accelerate, The DevOps Handbook, Lean Enterprise,

and the Jolt Award-winning Continuous Delivery. He has spent his career tinkering

with code, infrastructure, and product development in companies of varying sizes

across three continents. He works for Google Cloud as a technology advocate, and

teaches at UC Berkeley.

Dr. Dustin Smith is a human factors psychologist and senior user experience researcher

at Google. He has studied how people are affected by the systems and environments

around them in a variety of contexts: software engineering, free-to-play gaming,

healthcare, and military. His research at Google has emphasized identifying areas where

software developers can feel happier and more productive during development. Dustin

received his PhD in Human Factors Psychology from Wichita State University.

Jessie Frazelle is an independent consultant. She’s been an engineer at various

startups as well as Google, Microsoft, and GitHub. She’s observed a lot of different

development and infrastructure practices by working on the tools themselves, including

Docker and Kubernetes, and by also being an end user of various PaaS. She likes to see

things from all perspectives, jumping back and forth from developing tools to using them

in production.

https://cloud.google.com/devops
http://nicolefv.com/research/
https://www.amazon.com/dp/1942788339?tag=contindelive-20
https://www.amazon.com/dp/1942788002?tag=contindelive-20
https://www.amazon.com/dp/1449368425?tag=contindelive-20
https://www.amazon.com/dp/0321601912?tag=contindelive-20
https://www.ischool.berkeley.edu/people/jez-humble

81 Accelerate: State of DevOps 2019 | Appendix A81

APPENDIX A

DEPLOY FREQUENCY

TIME TO RESTORE SERVICE

LEAD TIME FOR CHANGES

2 – 2 –

2 – 2 –

4 – 4 –

4 – 4 –

6 – 6 –

6 – 6 –

LOW MED HIGH ELITE

M
TT

R

CH
AN

GE
 F

AI
L

US
ER

DE
PL

O
Y

O
FT

EN

LE
AD

 T
IM

E

LOW MED HIGH ELITE

LOW MED HIGH ELITE

LOW MED HIGH ELITE

CHANGE FAIL RATE

DEPLOY FREQUENCY:

1 = Fewer than once per six months

2 = Between once per month
and once every 6 months

3 = Between once per week and once per month

4 = Between once per day and once per week

5 = Between once per hour and once per day

6 = On demand (multiple deploys per day)

LEAD TIME FOR CHANGES

1 = More than six months

2 = Between one month and six months

3 = Between one week and one month

4 = Between one day and one week

5 = Less than one day

6 = Less than one hour

TIME TO RESTORE SERVICE

1 = More than six months

2 = Between one month and six months

3 = Between one week and one month

4 = Between one day and one week

5 = Less than one day

6 = Less than one hour

CHANGE FAIL RATE

1 = 76%-100%

2 = 61%-75%

3 = 46%-60%

4 = 31%-45%

5 = 16%-30%

6 = 0%-15%

https://cloud.google.com/devops

82 Accelerate: State of DevOps 2019 | Appendix B82

APPENDIX B
Strategies for Scaling DevOps
• Training Center (sometimes referred to as a DOJO) - Where

people are taken out of their normal work routines to learn new

tools or technologies, practices, and even culture for a period

of time, and then put back into their normal work environment

with the goal (hope?) that their new way of working will stick

and possibly even spread out to others.

• Center of Excellence - Where all expertise lives and then

consults out to others.

• Proof of Concept but Stall - A Proof of Concept (PoC) project,

where a central team is given the freedom to build in whatever

way they feel is best, often by breaking organizational norms

(and often formal rules). However, the effort stalls after the PoC.

• Proof of Concept as a Template - Starting with a small Proof of

Concept (PoC) project (described above), and then replicating

this pattern in other groups, using the first as a pattern.

• Proof of Concept as a Seed - Starting with a small Proof of

Concept (PoC), then spreading PoC knowledge to other groups.

This is done by breaking up PoC (either the first PoC group or

subsequent/ parallel PoC groups) and sending them to other

groups as a way to share the knowledge and practices learned.

This may also be described as a rotation, where the PoC

members are immersed in other teams to spread the new

practices and culture and used as teachers. They may stay in

this new group indefinitely or just long enough to ensure the

new practices are sustainable.

• Communities of Practice - Where groups that share common

interests in tooling, language, or methodologies are fostered

within an organization to share knowledge and expertise with

each other, across teams, and around the organization.

• Big Bang - Where the whole organization transforms

to DevOps methodologies (however they choose to

 define it) all at once, often with top-down directive.

• Bottom-up or Grassroots - Where small teams close to the work

pull together resources to transform and then informally share

their success throughout the organization and scale without

any formal organizational support or resources.

• Mashup - Where the org implements several approaches

described above, often only partially executed or with

insufficient resources or prioritization to enable success.

https://cloud.google.com/devops

